AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation

G. Bishwa Bidita VaradwajVincent O. Nyamori( )
School of Chemistry and PhysicsUniversity of KwaZulu-NatalWestville CampusPrivate Bag-X54001Durban4000South Africa
Show Author Information

Graphical Abstract

Abstract

The persistent need for a sustainable energy economy has led researchers to focus on novel energy conversion and storage technologies, inspiring the discovery of smart material designs such as hierarchical nanocomposites. These nanocomposites have proven effective in the advancement of energy-based technologies. The synergistic properties of hierarchical nanocomposites composed of two types of two-dimensional layered materials, layered double hydroxides and graphene, have resulted in improved electrochemical as well as photocatalytic performance. Synthetic strategies and their effect on the electrochemical and photocatalytic performance of these nanocomposites as high-performance supercapacitors and water oxidation catalysts are discussed in detail in this review.

References

1

Peng, S. J.; Jin, G. R.; Li, L. L.; Li, K.; Srinivasan, M.; Ramakrishna, S.; Chen, J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 2016, 45, 1225-1241.

2

Liu, C. F.; Song, H. Q.; Zhang, C. K.; Liu, Y. G.; Zhang, C. P.; Nan, X. H.; Cao; G. Z. Coherent Mn3O4-carbon nanocomposites with enhanced energy-storage capacitance. Nano Res. 2015, 8, 3372-3383.

3

Wang, Q.; Yan, J.; Fan, Z. J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729-762.

4

Yang, X. G.; Liu, R.; He, Y. M.; Thorne, J.; Zheng, Z.; Wang, D. W. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Res. 2015, 8, 56-81.

5

Shen, Y. F. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J. Mater. Chem. A 2015, 3, 13114-13188.

6

Guo, D.; Lai, L. F.; Cao, A. M.; Liu, H. K.; Dou, S. X.; Ma, J. M. Nanoarrays: Design, preparation and supercapacitor applications. RSC Adv. 2015, 5, 55856-55869.

7

Mombeshora, E. T.; Nyamori, V. O. A review on the use of carbon nanostructured materials in electrochemical capacitors. Int. J. Energy Res. 2015, 39, 1955-1980.

8

Liu, X. -W.; Sun, T. -J.; Hu, J. -L.; Wang, S. -D. Composites of metal-organic frameworks and carbon-based materials: Preparations, functionalities and applications. J. Mater. Chem. A 2016, 4, 3584-3616.

9

Perreault, F.; de Faria, A. F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861-5896.

10

Keru, G.; Ndungu, P. G.; Nyamori, V. O. A review on carbon nanotube/polymer composites for organic solar cells. Int. J. Energy Res. 2014, 38, 1635-1653.

11

Liu, Z. K.; Lau, S. P.; Yan, F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing. Chem. Soc. Rev. 2015, 44, 5638-5679.

12

Long, X.; Wang, Z. L.; Xiao, S.; An, Y. M.; Yang, S. H. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213-226.

13

Shao, M. F.; Zhang, R. K.; Li, Z. H.; Wei, M.; Evans, D. G.; Duan, X. Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commun. 2015, 51, 15880-15893.

14

Oh, J. -M.; Choi, S. -J.; Lee, G. -E.; Han, S. -H.; Choy, J. -H. Inorganic drug-delivery nanovehicle conjugated with cancer- cell-specific ligand. Adv. Funct. Mater. 2009, 19, 1617-1624.

15

Zhang, H.; Pan, D. K.; Zou, K.; He, J.; Duan, X. A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release. J. Mater. Chem. 2009, 19, 3069-3077.

16

Chen, C. P.; Wang, P. H.; Lim, T. T.; Liu, L. H.; Liu, S. M.; Xu, R. A facile synthesis of monodispersed hierarchical layered double hydroxide on silica spheres for efficient removal of pharmaceuticals from water. J. Mater. Chem. A 2013, 1, 3877-3880.

17

Zhao, J. W.; Shao, M. F.; Yan, D. P.; Zhang, S. T.; Lu, Z. Z.; Li, Z. X.; Cao, X. Z.; Wang, B. Y.; Wei, M.; Evans, D. G. et al. A hierarchical heterostructure based on Pd nanoparticles/layered double hydroxide nanowalls for enhanced ethanol electrooxidation. J. Mater. Chem. A 2013, 1, 5840-5846.

18

Chang, Q.; Zhu, L. H.; Luo, Z. H.; Lei, M.; Zhang, S. C.; Tang, H. Q. Sono-assisted preparation of magnetic magnesium-aluminum layered double hydroxides and their application for removing fluoride. Ultrason. Sonochem. 2011, 18, 553-561.

19

Han, J. B.; Dou, Y. B.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Flexible CoAl LDH@ PEDOT core/shell nanoplatelet array for high-performance energy storage. Small 2013, 9, 98-106.

20

Wang, L. J.; Xing, H. Y.; Zhang, S. J.; Ren, Q. G.; Pan, L. M.; Zhang, K.; Bu, W. B.; Zheng, X. P.; Zhou, L. P.; Peng, W. J. et al. A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials 2013, 34, 3390-3401.

21

Latorre-Sanchez, M.; Atienzar, P.; Abellán, G.; Puche, M.; Fornés, V.; Ribera, A.; García, H. The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon 2012, 50, 518-525.

22

Yu, C.; Yang, J.; Zhao, C. T.; Fan, X. M.; Wang, G.; Qiu, J. S. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: Understanding the role of nano-structured carbon. Nanoscale 2014, 6, 3097-3104.

23

Li, X. C.; Shen, J. J.; Sun, W.; Hong, X. D.; Wang, R. T.; Zhao, X. H.; Yan, X. B. A super-high energy density asymmetric supercapacitor based on 3D core-shell structured nico-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. J. Mater. Chem. A 2015, 3, 13244-13253.

24

Yang, J.; Yu, C.; Fan, X. M.; Ling, Z.; Qiu, J. S.; Gogotsi, Y. Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. J. Mater. Chem. A 2013, 1, 1963-1968.

25

Cao, Y.; Li, G. T.; Li, X. B. Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chem. Eng. J. 2016, 292, 207-223.

26

Li, B.; He, Y. M.; Lei, S. D.; Najmaei, S.; Gong, Y. J.; Wang, X.; Zhang, J.; Ma, L. L.; Yang, Y. C.; Hong, S. et al. Scalable transfer of suspended two-dimensional single crystals. Nano Lett. 2015, 15, 5089-5097.

27

Higgins, D.; Zamani, P.; Yu, A. P.; Chen, Z. W. The application of graphene and its composites in oxygen reduction electrocatalysis: A perspective and review of recent progress. Energy Environ. Sci. 2016, 9, 357-390.

28

Kim, H. -K.; Kamali, A. R.; Roh, K. C.; Kim, K. -B.; Fray, D. J. Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications. Energy Environ. Sci. 2016, 9, 2249-2256.

29

Rana, S.; Maddila S.; Jonnalagadda, S. B. Synthesis and characterization of Pd(Ⅱ) dispersed over diamine functionalized graphene oxide and its scope as a catalyst for selective oxidation. Catal. Sci. Technol. 2015, 5, 3235-3241.

30

Rana, S.; Maddila S.; Yalagala, K.; Jonnalagadda, S. B. Organo functionalized graphene with Pd nanoparticles and its excellent catalytic activity for Suzuki coupling reaction. Appl. Catal. A: Gen. 2015, 505, 539-547.

31

Xiong, P.; Zhu, J. W.; Zhang, L. L.; Wang, X. Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. Nanoscale Horiz. , in press, DOI: 10.1039/C5NH00134J.

32

Yang, J.; Yu, C.; Fan, X. M.; Zhao, C. T.; Qiu, J. S. Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 2015, 25, 2109-2116.

33

Khan, M.; Tahir, M. N.; Adil, S. F.; Khan, H. U.; Siddiqui, M. R. H.; Al-Warthan, A. A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753- 18808.

34

Majeed, A.; Ullah, W.; Anwar, A. W.; Nasreen, F.; Sharif, A.; Mustafa, G.; Khan, A. Graphene-metal oxides/hydroxide nanocomposite materials: Fabrication advancements and supercapacitive performance. J. Alloys Compd. 2016, 671, 1-10.

35

Tao, Q.; Zhu, J. X.; Frost, R. L.; Bostrom, T. E.; Wellard, R. M.; Wei, J. M.; Yuan, P.; He, H. P. Silylation of layered double hydroxides via a calcination-rehydration route. Langmuir 2010, 26, 2769-2773.

36

Theiss, F. L.; Ayoko, G. A.; Frost, R. L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200-213.

37

Parida, K.; Satpathy, M.; Mohapatra, L. Incorporation of Fe3+ into Mg/Al layered double hydroxide framework: Effects on textural properties and photocatalytic activity for H2 generation. J. Mater. Chem. 2012, 22, 7350-7357.

38

Baliarsingh, N.; Mohapatra, L.; Parida, K. Design and development of a visible light harvesting Ni-Zn/Cr-CO32- LDH system for hydrogen evolution. J. Mater. Chem. A 2013, 1, 4236-4243.

39

Miyata, S. Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Miner. 1980, 28, 50-56.

40

Rives, V. Layered Double Hydroxides: Present and Future; Nova Science Publishers: New York, 2001.

41

Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173-301.

42

Sels, B. F.; De Vos, D. E.; Jacobs, P. A. Hydrotalcite-like anionic clays in catalytic organic reactions. Catal. Rev. 2001, 43, 443-488.

43

Xu, Z. P.; Zeng, Q. H.; Lu, G. Q.; Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006, 61, 1027-1040.

44

Mousty, C. Sensors and biosensors based on clay-modified electrodes—New trends. Appl. Clay Sci. 2004, 27, 159-177.

45

Goh, K. H.; Lim, T. T.; Dong, Z. L. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343-1368.

46

Stimpfling, T.; Leroux, F. Supercapacitor-type behavior of carbon composite and replica obtained from hybrid layered double hydroxide active container. Chem. Mater. 2010, 22, 974-987.

47

Luo, J. S.; Im, J. -H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. -G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-1596.

48

Fogg, A. M.; Dunn, J. S.; O'Hare, D. Formation of second-stage intermediates in anion-exchange intercalation reactions of the layered double hydroxide[LiAl2(OH)6]Cl·H2O as observed by time-resolved, in situ X-ray diffraction. Chem. Mater. 1998, 10, 356-360.

49

Bravo-Suárez, J. J.; Páez-Mozo, E. A.; Oyama, S. T. Review of the synthesis of layered double hydroxides: A thermodynamic approach. Quim. Nova 2004, 27, 601-614.

50

Takagi, S.; Eguchi, M.; Tryk, D. A.; Inoue, H. Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. J. Photochem. Photobiol. C 2006, 7, 104-126.

51

Yarger, M. S.; Steinmiller, E. M. P.; Choi, K. -S. Electrochemical synthesis of Zn-Al layered double hydroxide (LDH) films. Inorg. Chem. 2008, 47, 5859-5865.

52

Nishimura, S.; Takagaki, A.; Ebitani, K. Characterization, synthesis and catalysis of hydrotalcite-related materials for highly efficient materials transformations. Green Chem. 2013, 15, 2026-2042.

53

Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040-7066.

54

Han, Y. F.; Liu, Z. -H.; Yang, Z. P.; Wang, Z. L.; Tang, X. H.; Wang, T.; Fan, L. H.; Ooi, K. Preparation of Ni2+-Fe3+ layered double hydroxide material with high crystallinity and well-defined hexagonal shapes. Chem. Mater. 2008, 20, 360-363.

55

Wang, Q.; Gao, Y. S.; Luo, J. Z.; Zhong, Z. Y.; Borgna, A.; Guo, Z. H.; O'Hare, D. Synthesis of nano-sized spherical Mg3Al-CO3 layered double hydroxide as a high-temperature CO2 adsorbent. RSC Adv. 2013, 3, 3414-3420.

56

Wu, H. Y.; Jiao, Q. Z.; Zhao, Y.; Huang, S. L.; Li, X. F.; Liu, H. B.; Zhou, M. J. Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion. Mater. Character. 2010, 61, 227-232.

57

Hu, G.; O'Hare, D. Unique layered double hydroxide morphologies using reverse microemulsion synthesis. J. Am. Chem. Soc. 2005, 127, 17808-17813.

58

Yang, W. L.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M. L.; Liu, L. H. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 5443-5454.

59

Guo, X. L.; Liu, X. Y.; Hao, X. D.; Zhu, S. J.; Dong, F.; Wen, Z. Q.; Zhang, Y. X. Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high- performance supercapacitor electrode materials. Electrochim. Acta 2016, 194, 179-186.

60

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. -E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

61

Gong, M.; Li, Y. G.; Zhang, H. B.; Zhang, B.; Zhou, W.; Feng, J.; Wang, H. J.; Liang, Y. Y.; Fan, Z. J.; Liu, J. et al. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci. 2014, 7, 2025-2032.

62

Wang, Y. L.; Ji, H. Q.; Peng, W.; Liu, L.; Gao, F.; Li, M. G. Gold nanoparticle-coated Ni/Al layered double hydroxides on glassy carbon electrode for enhanced methanol electro- oxidation. Int. J. Hydrog. Energy 2012, 37, 9324-9329.

63

Cho, S.; Jang, J. -W.; Kong, K. -J.; Kim, E. S.; Lee K. -H.; Lee, J. S. Anion-doped mixed metal oxide nanostructures derived from layered double hydroxide as visible light photocatalysts. Adv. Funct. Mater. 2013, 23, 2348-2356.

64

Hirata, N.; Tadanaga, K.; Tatsumisago, M. Photocatalytic O2 evolution from water over Zn-Cr layered double hydroxides intercalated with inorganic anions. Mater. Res. Bull. 2015, 62, 1-4.

65

Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162-163.

66

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.

67

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

68

Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498- 3502.

69

Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi T. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011, 11, 2396-2399.

70

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.

71

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

72

Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene- based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876-1902.

73

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

74

Lee, J. -U.; Yoon, D.; Cheong, H. Estimation of Young's modulus of graphene by Raman spectroscopy. Nano Lett. 2012, 12, 4444-4448.

75

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569-581.

76

Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413.

77

Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91, 163513.

78

Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217-224.

79

Dössel, L.; Gherghel, L.; Feng, X. L.; Müllen, K. Graphene nanoribbons by chemists: Nanometer-sized, soluble, and defect-free. Angew. Chem., Int. Ed. 2011, 50, 2540-2543.

80

Compton, O. C.; Nguyen, S. B. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711-723.

81

Coulson, C. A.; Taylor, R. Studies in graphite and related compounds I: Electronic band structure in graphite. Proc. Phys. Soc., London, Sect. A 1952, 65, 815.

82

Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 1860, 59, 466-472.

83

Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481-1487.

84

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.

85

Zhou, M.; Wang, Y. L.; Zhai, Y. M.; Zhai, J. F.; Ren, W.; Wang, F. A.; Dong, S. J. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. —Eur. J. 2009, 15, 6116-6120.

86

Kang, D. W.; Shin, H. S. Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett. 2012, 13, 39-43.

87

Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255-2259.

88

Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679-1682.

89

Shin, H. -J.; Kim, K. K.; Benayad, A.; Yoon, S. -M.; Park, H. K.; Jung, I. -S.; Jin, M. H.; Jeong, H. -K.; Kim, J. M.; Choi, J. -Y. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987-1992.

90

Pham, V. H.; Hur, S. H.; Kim, E. J.; Kim, B. S.; Chung, J. S. Highly efficient reduction of graphene oxide using ammonia borane. Chem. Commun. 2013, 49, 6665-6667.

91

Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High- throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25-29.

92

Zhou, X. J.; Zhang, J. L.; Wu, H. X.; Yang, H. J.; Zhang, J. Y.; Guo, S. W. Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene. J. Phys. Chem. C 2011, 115, 11957-11961.

93

Amarnath, C. A.; Hong, C. E.; Kim, N. H.; Ku, B. -C.; Kuila, T.; Lee, J. H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 2011, 49, 3497-3502.

94

Liu, S.; Tian, J. Q.; Wang, L.; Sun, X. P. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 2011, 49, 3158-3164.

95

Shen, X. P.; Jiang, L.; Ji, Z. Y.; Wu, J. L.; Zhou, H.; Zhu, G. X. Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. J. Colloid Interface Sci. 2011, 354, 493-497.

96

Che, J. F.; Shen, L. Y.; Xiao, Y. H. A new approach to fabricate graphene nanosheets in organic medium: Combination of reduction and dispersion. J. Mater. Chem. 2010, 20, 1722-1727.

97

Chen, W. F.; Yan, L. F.; Bangal, P. R. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 2010, 114, 19885-19890.

98

Zhou, T. N.; Chen, F.; Liu, K.; Deng, H.; Zhang, Q.; Feng, J. W.; Fu, Q. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 2011, 22, 045704.

99

Liu, Y. Z.; Li, Y. F.; Yang, Y. G.; Wen, Y. F.; Wang, M. Z. Reduction of graphene oxide by thiourea. J. Nanosci. Nanotechnol. 2011, 11, 10082-10086.

100

Some, S.; Kim, Y.; Yoon, Y.; Yoo, H.; Lee, S.; Park, Y.; Lee, H. High-quality reduced graphene oxide by a dual- function chemical reduction and healing process. Sci. Rep. 2013, 3, 1929.

101

Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490-4493.

102

Zhu, Y. W.; Stoller, M. D.; Cai, W. W.; Velamakanni, A.; Piner, R. D.; Chen, D.; Ruoff, R. S. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 2010, 4, 1227-1233.

103

Chen, W. F.; Yan, L. F. Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2010, 2, 559-563.

104

Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950-2956.

105

Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 2009, 21, 5004-5006.

106

Chen, W. F.; Yan, L. F.; Bangal, P. R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010, 48, 1146-1152.

107

Garg, B.; Ling, Y. C. Versatilities of graphene-based catalysts in organic transformations. Green Mater. 2013, 1, 47-61.

108

Dreyer, D. R.; Jia, H. P.; Bielawski, C. W. Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem., Int. Ed. 2010, 49, 6813-6816.

109

Qiao, L.; Guo, Y. M.; Sun, X.; Jiao, Y. C.; Wang, X. Y. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification. Bioprocess Biosyst. Eng. 2015, 38, 1455-1468.

110

Zhu, X. -H.; Xie, F.; Li, J.; Jin, G. -P. Simultaneously recover Ni, P and S from spent electroless nickel plating bath through forming graphene/NiAl layered double- hydroxide composite. J. Environ. Chem. Eng. 2015, 3, 1055-1060.

111

Hong, N. N.; Song, L.; Wang, B. B.; Stec, A. A.; Hull, T. R.; Zhan, J.; Hu, Y. Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater. Res. Bull. 2014, 49, 657-664.

112

Xie, R. F.; Fan, G. L.; Ma, Q.; Yang, L.; Li, F. Facile synthesis and enhanced catalytic performance of graphene- supported Ni nanocatalyst from a layered double hydroxide- based composite precursor. J. Mater. Chem. A 2014, 2, 7880-7889.

113

Miao, M. Y.; Feng, J. T.; Jin, Q.; He, Y. F.; Liu, Y. N.; Du, Y. Y.; Zhang, N.; Li, D. Q. Hybrid Ni-Al layered double hydroxide/graphene composite supported gold nanoparticles for aerobic selective oxidation of benzyl alcohol. RSC Adv. 2015, 5, 36066-36074.

114

Vialat, P.; Leroux, F.; Mousty, C. Hybrid Co2Al-ABTS/reduced graphene oxide layered double hydroxide: Towards O2 biocathode development. Electrochim. Acta 2015, 158, 113-120.

115

Tang, D.; Han, Y. Z.; Ji, W. B.; Qiao, S.; Zhou, X.; Liu, R. H.; Han, X.; Huang, H.; Liu, Y.; Kang, Z. H. A high- performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation. Dalton Trans. 2014, 43, 15119-15125.

116

Lan, M.; Fan, G. L.; Yang, L.; Li, F. Significantly enhanced visible-light-induced photocatalytic performance of hybrid Zn-Cr layered double hydroxide/graphene nanocomposite and the mechanism study. Ind. Eng. Chem. Res. 2014, 53, 12943-12952.

117

Garcia-Gallastegui, A.; Iruretagoyena, D.; Gouvea, V.; Mokhtar, M.; Asiri, A. M.; Basahel, S. N.; Al-Thabaiti, S. A.; Alyoubi, A. O.; Chadwick, D.; Shaffer, M. S. P. Graphene oxide as support for layered double hydroxides: Enhancing the CO2 adsorption capacity. Chem. Mater. 2012, 24, 4531-4539.

118

Li, M.; Cheng, J. P.; Wang, J.; Liu, F.; Zhang, X. B. The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim. Acta 2016, 206, 108-115.

119

Huang, W.; Zhong, H. H.; Li, D. Q.; Tang, P. G.; Feng, Y. J. Reduced graphene oxide supported CoO/MnO2 electrocatalysts from layered double hydroxides for oxygen reduction reaction. Electrochim. Acta 2015, 173, 575-580.

120

Han, X. T.; Yu, C.; Yang, J.; Zhao, C. T.; Huang, H. W.; Liu, Z. B.; Ajayan, P. M.; Qiu, J. S. Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe- layered double hydroxide assembled on graphene. Adv. Mater. Interfaces 2016, 3, 1500782.

121

Zhang, L. J.; Zhang, X. G.; Shen, L. F.; Gao, B.; Hao, L.; Lu, X. J.; Zhang, F.; Ding, B.; Yuan, C. Z. Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide composites as electrode material for supercapacitors. J. Power Sources 2012, 199, 395-401.

122

Yang, W. L.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M. L.; Liu, L. H. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 5443-5454.

123

Li, H. J.; Wen, J.; Yu, R. J.; Meng, J.; Wang, C.; Wang, C. X.; Sun, S. G. Facile synthesis of a nanocomposite based on graphene and ZnAl layered double hydroxides as a portable shelf of a luminescent sensor for DNA detection. RSC Adv. 2015, 5, 9341-9347.

124

Li, B.; Zhao, Y. F.; Zhang, S. T.; Gao, W.; Wei, M. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials. ACS Appl. Mater. Interfaces 2013, 5, 10233-10239.

125

Li, H. J.; Zhu, G.; Liu, Z. -H.; Yang, Z. P.; Wang, Z. L. Fabrication of a hybrid graphene/layered double hydroxide material. Carbon 2010, 48, 4391-4396.

126

Xia, D. -C.; Zhou, L.; Qiao, S.; Zhang, Y. L.; Tang, D.; Liu, J.; Huang, H.; Liu, Y.; Kang, Z. H. Graphene/Ni-Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Mater. Res. Bull. 2016, 74, 441-446.

127

Youn, D. H.; Park, Y. B.; Kim, J. Y.; Magesh, G.; Jang, Y. J.; Lee, J. S. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. J. Power Sources 2015, 294, 437-443.

128

Wang, X.; Zhou, S.; Xing, W. Y.; Yu, B.; Feng, X. M.; Song, L.; Hu, Y. Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A 2013, 1, 4383-4390.

129

Niu, Y. L.; Li, R. Y.; Li, Z. J.; Fang, Y. J.; Liu, J. K. High-performance supercapacitors materials prepared via in situ growth of NiAl-layered double hydroxide nanoflakes on well-activated graphene nanosheets. Electrochim. Acta 2013, 94, 360-366.

130

Yan, L.; Li, R. Y.; Li, Z. J.; Liu, J. K.; Fang, Y. J.; Wang, G. L.; Gu, Z. G. Three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite with super high electrochemical and capacitance performances. Electrochim. Acta 2013, 95, 146-154.

131

Tan, L. C.; Wang, Y. L.; Liu, Q.; Wang, J.; Jing, X. Y.; Liu, L. H.; Liu, J. Y.; Song, D. L. Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem. Eng. J. 2015, 259, 752-760.

132

Wang, Z.; Zhang, X.; Wang, J. H.; Zou, L. D.; Liu, Z. T.; Hao, Z. P. Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite. J. Colloid Interface Sci. 2013, 396, 251-257.

133

Gao, Z.; Wang, J.; Li, Z. S.; Yang, W. L.; Wang, B.; Hou, M. J.; He, Y.; Liu, Q.; Mann, T.; Yang, P. P. et al. Graphene nanosheet/Ni2+/Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor. Chem. Mater. 2011, 23, 3509-3516.

134

Huang, S.; Zhu, G. -N.; Zhang, C.; Tjiu, W. W.; Xia, Y. -Y.; Liu, T. X. Immobilization of Co-Al layered double hydroxides on graphene oxide nanosheets: Growth mechanism and supercapacitor studies. ACS Appl. Mater. Interfaces 2012, 4, 2242-2249.

135

Xu, J.; Gai, S. L.; He, F.; Niu, N.; Gao, P.; Chen, Y. J.; Yang, P. P. A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: Fabrication and high supercapacitor performance. J. Mater. Chem. A 2014, 2, 1022-1031.

136

Yang, Z.; Ji, S. S.; Gao, W.; Zhang, C.; Ren, L. L.; Tjiu, W. W.; Zhang, Z.; Pan, J. S.; Liu, T. X. Magnetic nanomaterial derived from graphene oxide/layered double hydroxide hybrid for efficient removal of methyl orange from aqueous solution. J. Colloid Interface Sci. 2013, 408, 25-32.

137

Zhang, L. J.; Hui, K. N.; Hui, K. S.; Lee, H. Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors. Electrochim. Acta 2015, 186, 522-529.

138

Hao, J. H.; Yang, W. S.; Zhang, Z.; Lu, B. P.; Ke, X.; Zhang, B. L.; Tang, J. L. Facile synthesis of three dimensional hierarchical Co-Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode. J. Colloid Interface Sci. 2014, 426, 131-136.

139

Yuan, X. Y.; Wang, Y. F.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. B. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 2013, 221, 204-213.

140

Zhao, X. D.; Cao, J. -P.; Zhao, J.; Hu, G. -H.; Dang, Z. -M. A hybrid Mg-Al layered double hydroxide/graphene nanostructure obtained via hydrothermal synthesis. Chem. Phys. Lett. 2014, 605-606, 77-80.

141

Cai, X. Q.; Shen, X. P.; Ma, L. B.; Ji, Z. Y.; Xu, C.; Yuan, A. H. Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 2015, 268, 251-259.

142

Yang, J.; Yu, C.; Fan, X. M.; Qiu J. S. 3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors. Adv. Energy Mater. 2014, 4, 1400761.

143

Lonkar, S. P.; Raquez, J. -M.; Dubois, P. One-pot microwave-assisted synthesis of graphene/layered double hydroxide (LDH) nanohybrids. Nano-Micro Lett. 2015, 7, 332-340.

144

Yan, T.; Li, R. Y.; Li, Z. J. Nickel-cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials. Mater. Res. Bull. 2014, 51, 97-104.

145

Fang, J. H.; Li, M.; Li, Q. Q.; Zhang, W. F.; Shou, Q. L.; Liu, F.; Zhang, X. B.; Cheng, J. P. Microwave-assisted synthesis of CoAl-layered double hydroxide/graphene oxide composite and its application in supercapacitors. Electrochim. Acta 2012, 85, 248-255.

146

Li, M.; Cheng, J. P.; Fang, J. H.; Yang, Y.; Liu, F.; Zhang, X. B. NiAl-layered double hydroxide/reduced graphene oxide composite: Microwave-assisted synthesis and supercapacitive properties. Electrochim. Acta 2014, 134, 309-318.

147

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Sci. China Mater. 2015, 58, 944-952.

148

Ge, X.; Gu, C. D.; Yin, Z. Y.; Wang, X. L.; Tu, J. P.; Li, J. Periodic stacking of 2D charged sheets: Self-assembled superlattice of Ni-Al layered double hydroxide (LDH) and reduced graphene oxide. Nano Energy 2016, 20, 185-193.

149

Wimalasiri, Y.; Fan, R.; Zhao, X. S.; Zou, L. D. Assembly of Ni-Al layered double hydroxide and graphene electrodes for supercapacitors. Electrochim. Acta 2014, 134, 127-135.

150

Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977-1984.

151

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584-7588.

152

Wang, J. Y.; Mei, X. Y.; Huang, L.; Zheng, Q. W.; Qiao, Y. Q.; Zang, K. T.; Mao, S. C.; Yang, R. Y.; Zhang, Z.; Gao, Y. S. et al. Synthesis of layered double hydroxides/graphene oxide nanocomposite as a novel high-temperature CO2 adsorbent. J. Energy Chem. 2015, 24, 127-137.

153

Wang, Y.; Zhang, D.; Bao, Q.; Wu, J. J.; Wan, Y. Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide-drug intercalated layered double hydroxide hybrid films. J. Mater. Chem. 2012, 22, 23106-23113.

154

Huang, Z. C.; Wang, S. L.; Wang, J. P.; Yu, Y. M.; Wen, J. J.; Li, R. Exfoliation-restacking synthesis of CoAl-layered double hydroxide nanosheets/reduced graphene oxide composite for high performance supercapacitors. Electrochim. Acta 2015, 152, 117-125.

155

Zhang, R. K.; An, H. L.; Li, Z. H.; Shao, M. F.; Han, J. B.; Wei, M. Mesoporous graphene-layered double hydroxides free-standing films for enhanced flexible supercapacitors. Chem. Eng. J. 2016, 289, 85-92.

156

Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chem. Commun. 2011, 47, 3556-3558.

157

Werner, S.; Lau, V. W. -H.; Hug, S.; Duppel, V.; Clausen-Schaumann, H.; Lotsch, B. V. Cationically charged MnAl LDH nanosheets by chemical exfoliation and their use as building blocks in graphene oxide-based materials. Langmuir 2013, 29, 9199-9207.

158

Gunjakar, J. L.; Kim, I. Y.; Lee, J. M.; Lee, N. -S.; Hwang, S. -J. Self-assembly of layered double hydroxide 2D nanoplates with graphene nanosheets: An effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation. Energy Environ. Sci. 2013, 6, 1008-1017.

159

Quan, W.; Tang, Z. L.; Wang, S. T.; Hong, Y.; Zhang, Z. T. Facile preparation of free-standing rGO paper-based Ni-Mn LDH/graphene superlattice composites as a pseudocapacitive electrode. Chem. Commun. 2016, 52, 3694-3696.

160

Ma, W.; Ma, R. Z.; Wu, J. H.; Sun, P. Z.; Liu, X. H.; Zhou, K. C.; Sasaki, T. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene. Nanoscale 2016, 8, 10425-10432.

161

Chen, D.; Wang, X. Y.; Liu, T. X.; Wang, X. D.; Li, J. Electrically conductive poly(vinyl alcohol) hybrid films containing graphene and layered double hydroxide fabricated via layer-by-layer self-assembly. ACS Appl. Mater. Interfaces 2010, 2, 2005-2011.

162

Kim, Y.; Kim, S. Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites. Electrochim. Acta 2015, 163, 252-259.

163

Dong, X. Y.; Wang, L.; Wang, D.; Li, C.; Jin, J. Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. Langmuir 2012, 28, 293-298.

164

Yan, Y. -X.; Yao, H. -B.; Mao, L. -B.; Asiri, A. M.; Alamry, K. A.; Marwani, H. M.; Yu, S. -H. Micrometer-thick graphene oxide-layered double hydroxide nacre-inspired coatings and their properties. Small 2016, 12, 745-755.

165

Yang, Q. Z.; Yang, J.; Jiang, F. J.; Zhao, H. Z. Enhanced photocurrent generation in graphene/copper phthalocyanine/Mg-Al-layered double hydroxide layer-by-layer multilayers. Adv. Eng. Mater. 2016, 18, 141-147.

166

Ogawa, M.; Kaiho, H. Homogeneous precipitation of uniform hydrotalcite particles. Langmuir 2002, 18, 4240-4242.

167

Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 2014, 47, 1338-1348.

168

Ma, R. Z.; Liu, Z. P.; Li, L.; Iyi, N.; Sasaki, T. Exfoliating layered double hydroxides in formamide: A method to obtain positively charged nanosheets. J. Mater. Chem. 2006, 16, 3809-3813.

169

O'Leary, S.; O'Hare, D.; Seeley, G. Delamination of layered double hydroxides in polar monomers: New LDH- acrylate nanocomposites. Chem. Commun. 2002, 1506-1507.

170

Naik, V. V.; Ramesh, T. N.; Vasudevan, S. Neutral nanosheets that gel: Exfoliated layered double hydroxides in toluene. J. Phys. Chem. Lett. 2011, 2, 1193-1198.

171

Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. -L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730-2731.

172

Kandalkar, S. G.; Dhawale, D. S.; Kim, C. K.; Lokhande, C. D. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth. Met. 2010, 160, 1299-1302.

173

Calvo, E. G.; Lufrano, F.; Staiti, P.; Brigandì, A.; Arenillas, A.; Menéndez, J. A. Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J. Power Sources 2013, 241, 776-782.

174

Raymundo-Piñero, E.; Kierzek, K.; Machnikowski, J.; Béguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 2006, 44, 2498-2507.

175

Tran, C.; Kalra, V. Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J. Power Sources 2013, 235, 289-296.

176

Fan, L. -Z.; Qiao, S. Y.; Song, W. L.; Wu, M.; He, X. B.; Qu, X. H. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim. Acta 2013, 105, 299-304.

177

Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872-1876.

178

Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 2006, 5, 987-994.

179

Du, C. S.; Yeh, J.; Pan, N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 2005, 16, 350-353.

180

Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R. et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423-1427.

181

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.

182

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

183

Ramya, R.; Sivasubramanian, R.; Sangaranarayanan, M. V. Conducting polymers-based electrochemical supercapacitors- progress and prospects. Electrochim. Acta 2013, 101, 109-129.

184

Chen, J. W.; Wang, X.; Wang, J. X.; Lee, P. S. Sulfidation of NiMn-layered double hydroxides/graphene oxide composites toward supercapacitor electrodes with enhanced performance. Adv. Energy Mater. 2016, 6, 1501745.

185

Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4, 3800-3821.

186

Subbaraman, R.; Tripkovic, D.; Chang, K. -C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550-557.

187

Tang, C.; Wang, H. -S.; Wang, H. -F.; Zhang, Q.; Tian, G. -L.; Nie, J. -Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516-4522.

188

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535.

189

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.

190

Yang, L. L.; Zhou, H.; Fan, T. X.; Zhang, D. Semiconductor photocatalysts for water oxidation: Current status and challenges. Phys. Chem. Chem. Phys. 2014, 16, 6810-6826.

191

Teramura, K.; Iguchi, S.; Mizuno, Y.; Shishido, T.; Tanaka, T. Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew. Chem., Int. Ed. 2012, 51, 8008- 8011.

192

Silva, C. G.; Bouizi, Y.; Fornés, V.; García, H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J. Am. Chem. Soc. 2009, 131, 13833-13839.

193

Gunjakar, J. L.; Kim, T. W.; Kim, H. N.; Kim, I. Y.; Hwang, S. -J. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: Highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 2011, 133, 14998- 15007.

194

Lee, Y.; Choi, J. H.; Jeon, H. J.; Choi, K. M.; Lee, J. W.; Kang, J. K. Titanium-embedded layered double hydroxides as highly efficient water oxidation photocatalysts under visible light. Energy Environ. Sci. 2011, 4, 914-920.

195

Zhao, Y. F.; Li, B.; Wang, Q.; Gao, W.; Wang, C. J.; Wei, M.; Evans, D. G.; Duan, X.; O'Hare, D. NiTi-layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chem. Sci. 2014, 5, 951-958.

196

Hou, Y.; Wen, Z. H.; Cui, S. M.; Feng, X. L.; Chen, J. H. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe- layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett. 2016, 16, 2268-2277.

Nano Research
Pages 3598-3621
Cite this article:
Bishwa Bidita Varadwaj G, Nyamori VO. Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. Nano Research, 2016, 9(12): 3598-3621. https://doi.org/10.1007/s12274-016-1250-3

842

Views

108

Crossref

N/A

Web of Science

111

Scopus

0

CSCD

Altmetrics

Received: 13 June 2016
Revised: 02 August 2016
Accepted: 08 August 2016
Published: 23 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return