AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites

Aruuhan Bayaguud1Kun Chen1Yongge Wei1,2( )
Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084China
State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100191China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional nanomaterials have become a hot research topic, and progress in research on them in the past decade has been substantial. Here we demonstrate a molecule-based bottom-up method to synthesize freestanding polyoxometalatebased nanosheets in two different ways. The trans substitution of ligands with carboxylate functionality promoted the coordination of organically derivatized hexavanadate with zinc ions with preferential directionality, which led to the formation of coordination polymer nanosheets. Characterization with transmission electron microscopy, powder X-ray diffraction, and infrared spectroscopy confirmed the morphology, structural composition, and preferential direction of the nanosheets. The microwave-assisted heating method and solvent addition method were proved to be effective for the preparation of POM-based nanosheet structures. The nanosheets were found to catalyze the aerobic oxidation of propanethiol (n-PrSH) to its corresponding disulfide (PrSSPr) under mild conditions.

Electronic Supplementary Material

Download File(s)
nr-9-12-3858_ESM.pdf (2.1 MB)

References

1

Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.

2

Wang, Y.; Chen, Z.; Shen, R. A.; Cao, X.; Chen, Y. G.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D. Pd-dispersed CuS hetero- nanoplates for selective hydrogenation of phenylacetylene. Nano Res. 2016, 9, 1209–1219.

3

Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395–401.

4

Wang, H. L.; Wang, X. R.; Li, X. L.; Dai, H. J. Chemical self-assembly of graphene sheets. Nano Res. 2009, 2, 336–342.

5

Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.

6

Guo, S. J.; Dong S. J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. J. Chem. Soc. Rev. 2011, 40, 2644– 2672.

7

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263– 275.

8

Sun, Z. Q.; Liao, T.; Dou, Y. H.; Hwang, S. M.; Park, M. S.; Jiang, L.; Kim, J. H.; Dou, S. X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813.

9

Gu, Z.; Atherton, J. J.; Xu, Z. P. Hierarchical layered double hydroxide nanocomposites: Structure, synthesis and applications. Chem. Commun. 2015, 51, 3024–3036.

10

Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993.

11

Xu, M. W.; Sun, H. T.; Shen, C.; Yang, S.; Que, W. X.; Zhang, Y.; Song, X. P. Lithium-assisted exfoliation of pristine graphite for few-layer graphene nanosheets. Nano Res. 2015, 8, 801–807.

12

Sakamoto, R.; Hoshiko, K.; Liu, Q.; Yagi, T.; Nagayama, T.; Kusaka, S.; Tsuchiya, M.; Kitagawa, Y.; Wong, W. Y.; Nishihara, H. A photofunctional bottom-up bis(dipyrrinato)zinc(Ⅱ) complex nanosheet. Nat. Commun. 2015, 6, 6713.

13

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

14

Liu, Q.; Sun, C. Y.; He, Q.; Khalil, A.; Xiang, T.; Liu, D. B.; Zhou, Y.; Wang, J.; Song, L. Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Res. 2015, 8, 3982–3991.

15

Ma, R. G.; Ren, X. D.; Xia, B. Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J. J.; Wang, J. C. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819.

16

Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Two-dimensional polymers: Just a dream of synthetic chemists? Angew. Chem., Int. Ed. 2009, 48, 1030–1069.

17

Bauer, T.; Zheng, Z. K.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem., Int. Ed. 2011, 50, 7879–7884.

18

Zheng, Z. K.; Opilik, L.; Schiffmann, F.; Liu, W.; Bergamini, G.; Ceroni, P.; Lee, L. T.; Schütz, A.; Sakamoto, J.; Zenobi, R. et al. Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets. J. Am. Chem. Soc. 2014, 136, 6103–6110.

19

Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M. et al. π-conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135, 2462–2465.

20

Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Xamena, F. X. L. I.; Gascon, J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.

21

Junggeburth, S. C.; Diehl, L.; Werner, S.; Duppel, V.; Sigle, W.; Lotsch, B. V. Ultrathin 2D coordination polymer nanosheets by surfactant-mediated synthesis. J. Am. Chem. Soc. 2013, 135, 6157–6164.

22

Turchanin, A.; Beyer, A.; Nottbohm, C. T.; Zhang, X. H.; Stosch, R.; Sologubenko, A.; Mayer, J.; Hinze, P.; Weimann, T.; Gölzhäuser, A. One nanometer thin carbon nanosheets with tunable conductivity and stiffness. Adv. Mater. 2009, 21, 1233–1237.

23

Schrettl, S.; Stefaniu, C.; Schwieger, C.; Pasche, G.; Oveisi, E.; Fontana, Y.; Morral, A. F. I; Reguera, J.; Petraglia, R.; Corminboeuf, C. et al. Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nat. Chem. 2014, 6, 468–476.

24

Wang, W. T.; Chakrabarti, S.; Chen, Z. G.; Yan, Z. F.; Tade, M. O.; Zou, J.; Li, Q. A novel bottom-up solvothermal synthesis of carbon nanosheets. J. Mater. Chem. A 2014, 2, 2390–2396.

25

Son, S. Y.; Noh, Y. J.; Bok, C.; Lee, S.; Kim, B. G.; Na, S. I.; Joh, H. I. One-step synthesis of carbon nanosheets converted from a polycyclic compound and their direct use as transparent electrodes of ITO-free organic solar cells. Nanoscale 2014, 6, 678–682.

26

Cheong, W. C.; Liu, C. H.; Jiang, M. L.; Duan, H. H.; Wang, D. S.; Chen, C.; Li, Y. D. Free-standing palladium-nickel alloy wavy nanosheets. Nano Res. 2016, 9, 2244–2250.

27

Hill, C. L.; Prosser-McCartha, C. M. Homogeneous catalysis by transition metal oxygen anion clusters. Coord. Chem. Rev. 1995, 143, 407–455.

28

Rhule, J. T.; Hill, C. L.; Judd, D. A.; Schinazi, R. F. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327– 358.

29

Müller, A.; Peters, F.; Pope, M. T.; Gatteschi, D. Polyoxometalates: Very large clusters-nanoscale magnets. Chem. Rev. 1998, 98, 239–272.

30

Yamase, T. Photo- and electrochromism of polyoxometalates and related materials. Chem. Rev. 1998, 98, 307–326.

31

Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736–1758.

32

He, P. L.; Xu, B.; Wang, P. P.; Liu, H. L.; Wang, X. A monolayer polyoxometalate superlattice. Adv. Mater. 2014, 26, 4339–4344.

33

Wu, P. F.; Chen, J. K.; Yin, P. C.; Xiao, Z. C.; Zhang, J.; Bayaguud, A.; Wei, Y. G. Solvent-induced supramolecular chirality switching of bis-(trisalkoxy)-hexavanadates. Polyhedron 2013, 52, 1344–1348.

34

Grill, J. M.; Ogle, J. W.; Miller, S. A. An efficient and practical system for the catalytic oxidation of alcohols, aldehydes, and α, β-unsaturated carboxylic acids. J. Org. Chem. 2006, 71, 9291–9296.

35

Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen- sulphur donor ligands: The crystal and molecular structure of aqua[1, 7-bis(N-methylbenzimidazol-2'-yl)-2, 6- dithiaheptane]copper(Ⅱ) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 1349–1356.

36

Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

37

Chen, Q.; Goshorn, D. P.; Scholes, C. P.; Tan, X. L.; Zubieta, J. Coordination compounds of polyoxovanadates with a hexametalate core. Chemical and structural characterization of[V6VO13{(OCH2)3CR}2]2–, [V6VO11(OH)2{(OCH2)3CR}2], [V4IVV2VO9(OH)4{(OCH2)3CR}2]2–, and[V6IVO7(OH)6{(OCH2)3CR}2]2–. J. Am. Chem. Soc. 1992, 114, 4667–4681.

38

Hill, C. L.; Anderson, T. M.; Han, J. W.; Hillesheim, D. A.; Geletii, Y. V.; Okun, N. M.; Cao, R.; Botar, B.; Musaev, D. G.; Morokuma, K. New complexes and materials for O2-based oxidations. J. Mol. Catal. A-Chem. 2006, 251, 234–238.

39

Han, J. W.; Hill, C. L. A coordination network that catalyzes O2-based oxidations. J. Am. Chem. Soc. 2007, 129, 15094– 15095.

40

Yin, P. C.; Wang, J.; Xiao, Z. C.; Wu, P. F.; Wei, Y. G.; Liu, T. B. Polyoxometalate–organic hybrid molecules as amphiphilic emulsion catalysts for deep desulfurization. Chem. —Eur. J. 2012, 18, 9174–9178.

41

Yin, P. C.; Bayaguud, A.; Cheng, P.; Haso, F.; Hu, L.; Wang, J.; Vezenov, D.; Winans, R. E.; Hao, J.; Li, T. et al. Spontaneous stepwise self-assembly of a polyoxometalate– organic hybrid into catalytically active one-dimensional anisotropic structures. Chem. —Eur. J. 2014, 20, 9589– 9595.

Nano Research
Pages 3858-3867
Cite this article:
Bayaguud A, Chen K, Wei Y. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Research, 2016, 9(12): 3858-3867. https://doi.org/10.1007/s12274-016-1255-y

694

Views

29

Crossref

N/A

Web of Science

29

Scopus

6

CSCD

Altmetrics

Received: 07 July 2016
Revised: 15 August 2016
Accepted: 16 August 2016
Published: 20 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return