Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Single-atom catalysts are of great interest and importance for designing new high-performance low-cost catalysts. We investigated CO oxidation catalyzed by single gold atoms supported on thoria (Au/ThO2) and doped ThO2 using density functional theory with Hubbard-type on-site Coulomb interaction (DFT + U). The calculation results show that the Au-doped ThO2(111) catalyst exhibits remarkable catalytic activity for CO oxidation via the Eley–Rideal mechanism in three steps, where the rate-determining step is decomposition of the OCOO* intermediate with an energy barrier of 0.58 eV. Moreover, our results also reveal a new mechanism of CO oxidation on a gold adatom supported by ThO2(111), where O2 is adsorbed only at the Th site on the surface, and the gas-phase CO then reacts directly with the activated O2* to form CO2, which is the rate-limiting step, with a barrier of 0.46 eV. It is found that CO oxidation can occur without CO and O2 coadsorption on Au, which was previously considered a key intermediate. Therefore, these results provide new insights into CO oxidation on isolated gold atoms supported by the 5f-element compound ThO2(111). This mechanism can help clarify the catalytic cycle of CO oxidation, support the design of high-performance low-cost catalysts, and elucidate the redox properties of actinide oxides.
Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W. M. First- principles calculations of PuO2±x. Science 2003, 301, 498– 501.
Korzhavyi, P. A.; Vitos, L.; Andersson, D. A.; Johansson, B. Oxidation of plutonium dioxide. Nat. Mater. 2004, 3, 225– 228.
Haschke, J. M.; Allen, T. H.; Morales, L. A. Reaction of plutonium dioxide with water: Formation and properties of PuO2+x. Science 2000, 287, 285–287.
Wickleder, M. S.; Fourest, B.; Dorhout, P. K. Thorium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L.; Edelstein, N.; Fuger, J., Eds.; Springer: Netherlands, 2006; pp 52–160.
Katz, J. J.; Morss, L. R.; Edelstein, N. M.; Fuger, J. Introduction. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R.; Edelstein, N.; Fuger, J.; Katz, J. J., Eds.; Springer: Netherlands, 2011; pp 1–17.
Hania, P. R.; Klaassen, F. C. 3. 04 - Thorium oxide fuel. In Comprehensive Nuclear Materials; Konings, R. J. M., Ed.; Elsevier: Oxford, 2012; pp 87–108.
Kandan, R.; Babu, R.; Manikandan, P.; Venkata Krishnan, R.; Nagarajan, K. Calorimetric measurements on (U, Th)O2 solid solutions. J. Nucl. Mater. 2009, 384, 231–235.
Tabakova, T.; Idakiev, V.; Tenchev, K.; Boccuzzi, F.; Manzoli, M.; Chiorino, A. Pure hydrogen production on a new gold–thoria catalyst for fuel cell applications. Appl. Catal. B 2006, 63, 94–103.
Jacobs, G.; Patterson, P. M.; Graham, U. M.; Crawford, A. C.; Dozier, A.; Davis, B. H. Catalytic links among the water–gas shift, water-assisted formic acid decomposition, and methanol steam reforming reactions over Pt-promoted thoria. J. Catal. 2005, 235, 79–91.
Jacobs, G.; Crawford, A.; Williams, L.; Patterson, P. M.; Davis, B. H. Low temperature water–gas shift: Comparison of thoria and ceria catalysts. Appl. Catal. A 2004, 267, 27–33.
Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chem. Lett. 1987, 16, 405–408.
Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.
Liu, Z. -P.; Jenkins, S. J.; King, D. A. Role of nanostructured dual-oxide supports in enhanced catalytic activity: Theory of CO oxidation over Au/IrO2/TiO2. Phys. Rev. Lett. 2004, 93, 156102.
Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.
Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts—"Inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal. 2001, 197, 113–122.
Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. -M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307, 403–407.
Molina, L. M.; Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett. 2003, 90, 206102.
Molina, L. M.; Hammer, B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys. Rev. B 2004, 69, 155424.
Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Häkkinen, H.; Barnett, R. N.; Landman, U. When gold is not noble: Nanoscale gold catalysts. J. Phys. Chem. A 1999, 103, 9573–9578.
Zhang, X.; Wang, H.; Xu, B. -Q. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B 2005, 109, 9678–9683.
Wang, C. -M.; Fan, K. -N.; Liu, Z. -P. Origin of oxide sensitivity in gold-based catalysts: A first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO2. J. Am. Chem. Soc. 2007, 129, 2642–2647.
Comotti, M.; Li, W. -C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.
Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M. XPS study of supported gold catalysts: The role of Au0 and Au+δ species as active sites. Surf. Interface Anal. 2006, 38, 215–218.
Uchiyama, T.; Yoshida, H.; Kuwauchi, Y.; Ichikawa, S.; Shimada, S.; Haruta, M.; Takeda, S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angew. Chem. 2011, 123, 10339–10342.
Venezia, A. M.; Pantaleo, G.; Longo, A.; Di Carlo, G.; Casaletto, M. P.; Liotta, F. L.; Deganello, G. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. J. Phys. Chem. B 2005, 109, 2821–2827.
Huang, X. -S.; Sun, H.; Wang, L. -C.; Liu, Y. -M.; Fan, K. -N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B 2009, 90, 224–232.
Kim, H. Y.; Lee, H. M.; Henkelman, G. CO oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560–1570.
Chen, S. L.; Luo, L. F.; Jiang, Z. Q.; Huang, W. X. Size- dependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal. 2015, 5, 1653–1662.
Haruta, M. Spiers memorial lecture: Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss. 2011, 152, 11–32.
Meyer, R.; Lemire, C.; Shaikhutdinov, S. K.; Freund, H. J. Surface chemistry of catalysis by gold. Gold Bull. 2004, 37, 72–124.
Grunwaldt, J. -D.; Kiener, C.; Wögerbauer, C.; Baiker, A. Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. J. Catal. 1999, 181, 223–232.
Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 2004, 223, 232–235.
Bond, G.; Thompson, D. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000, 33, 41–50.
Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. 1999, 41, 319–388.
Haruta, M. Size-and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
Yang, X. -F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.
Li, F. Y.; Li, Y. F.; Zeng, X. C.; Chen, Z. F. Exploration of High-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 2015, 5, 544–552.
Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.
Fang, H. -C.; Li, Z. H.; Fan, K. -N. CO oxidation catalyzed by a single gold atom: Benchmark calculations and the performance of DFT methods. Phys. Chem. Chem. Phys. 2011, 13, 13358–13369.
Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.
Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.
Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525–10530.
Novotný, Z.; Argentero, G.; Wang, Z. M.; Schmid, M.; Diebold, U.; Parkinson, G. S. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 2012, 108, 216103.
Abbet, S.; Heiz, U.; Häkkinen, H.; Landman, U. CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 2001, 86, 5950–5953.
Liang, J. -X.; Lin, J.; Yang, X. -F.; Wang, A. -Q.; Qiao, B. -T.; Liu, J. Y.; Zhang, T.; Li, J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C 2014, 118, 21945–21951.
Liang, J. -X.; Yang, X. -F.; Wang, A. -Q.; Zhang, T.; Li, J. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol., in press, DOI: 10.1039/C6CY00672H.
Qiao, B. T.; Liang, J. -X.; Wang, A. Q.; Xu, C. -Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.
Qiao, B. T.; Liu, J. X.; Wang, Y. -G.; Lin, Q. Q.; Liu, X. Y.; Wang, A. Q.; Li, J.; Zhang, T.; Liu, J. Y. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 2015, 5, 6249–6254.
Wang, Y. -G.; Mei, D. H.; Glezakou, V. -A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.
Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.
Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A. et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide- supported gold. J. Catal. 2006, 242, 71–81.
Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple[Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.
Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.
Xiao, H. Y.; Weber, W. J. Oxygen vacancy formation and migration in CexTh1–xO2 solid solution. J. Phys. Chem. B 2011, 115, 6524–6533.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Feynman, R. P. Forces in molecules. Phys. Rev. 1939, 56, 340–343.
Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations; World Scientific Publishing: Singapore, 1998; pp 385–404.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.
Staun Olsen, J.; Gerward, L.; Kanchana, V.; Vaitheeswaran, G. The bulk modulus of ThO2—An experimental and theoretical study. J. Alloys Compd. 2004, 381, 37–40.
Grau-Crespo, R.; Hernández, N. C.; Sanz, J. F.; de Leeuw, N. H. Redox properties of gold-substituted zirconia surfaces. J. Mater. Chem. 2009, 19, 710–717.
Carrasco, J.; Lopez, N.; Illas, F.; Freund, H. -J. Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. J. Chem. Phys. 2006, 125, 074711.
Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 2007, 62, 219–270.
Chauke, H. R.; Murovhi, P.; Ngoepe, P. E.; de Leeuw, N. H.; Grau-Crespo, R. Electronic structure and redox properties of the Ti-doped zirconia (111) surface. J. Phys. Chem. C 2010, 114, 15403–15409.
Ganduglia-Pirovano, M. V.; Da Silva, J. L. F.; Sauer, J. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys. Rev. Lett. 2009, 102, 026101.
Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985.
Wang, H. -F.; Li, H. -Y.; Gong, X. -Q.; Guo, Y. -L.; Lu, G. -Z.; Hu, P. Oxygen vacancy formation in CeO2 and Ce1–xZrxO2 solid solutions: Electron localization, electrostatic potential and structural relaxation. Phys. Chem. Chem. Phys. 2012, 14, 16521–16535.
Tang, Y.; Zhao, S.; Long, B.; Liu, J. -C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514– 17526.
Nilius, N.; Freund, H. -J. Activating nonreducible oxides via doping. Acc. Chem. Res. 2015, 48, 1532–1539.
McFarland, E. W.; Metiu, H. Catalysis by doped oxides. Chem. Rev. 2013, 113, 4391–4427.
Nolan, M.; Verdugo, V. S.; Metiu, H. Vacancy formation and CO adsorption on gold-doped ceria surfaces. Surf. Sci. 2008, 602, 2734–2742.
Shapovalov, V.; Metiu, H. Catalysis by doped oxides: CO oxidation by AuxCe1−xO2. J. Catal. 2007, 245, 205–214.
Chrétien, S.; Metiu, H. Density functional study of the CO oxidation on a doped rutile TiO2(110): Effect of ionic Au in catalysis. Catal. Lett. 2006, 107, 143–147.
Chen, H. -T. First-principles study of CO adsorption and oxidation on Ru-doped CeO2(111) surface. J. Phys. Chem. C 2012, 116, 6239–6246.
Chen, H. -T.; Chang, J. -G. Computational investigation of CO adsorption and oxidation on iron-modified cerium oxide. J. Phys. Chem. C 2011, 115, 14745–14753.
Hsu, L. -C.; Tsai, M. -K.; Lu, Y. -H.; Chen, H. -T. Computational investigation of CO adsorption and oxidation on Mn/CeO2(111) surface. J. Phys. Chem. C 2013, 117, 433–441.
Liu, J.; Liu, B.; Fang, Y.; Zhao, Z.; Wei, Y. C.; Gong, X. -Q.; Xu, C. M.; Duan, A. J.; Jiang, G. Y. Preparation, characterization and origin of highly active and thermally stable Pd–Ce0.8Zr0.2O2 catalysts via sol-evaporation induced self-assembly method. Environ. Sci. Technol. 2014, 48, 12403–12410.
Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Hun Kwak, J.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.
Chen, H. -T.; Chang, J. -G.; Chen, H. -L.; Ju, S. -P. Identifying the O2 diffusion and reduction mechanisms on CeO2 electrolyte in solid oxide fuel cells: A DFT + U study. J. Comput. Chem. 2009, 30, 2433–2442.
Widmann, D.; Behm, R. J. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc. Chem. Res. 2014, 47, 740–749.
Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T., Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.
Wang, J.; McEntee, M.; Tang, W. J.; Neurock, M.; Baddorf, A. P.; Maksymovych, P.; Yates, J. T., Jr. Formation, migration, and reactivity of Au–CO complexes on gold surfaces. J. Am. Chem. Soc. 2016, 138, 1518–1526.
Liu, Z. -P.; Gong, X. -Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Catalytic role of metal oxides in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au. Phys. Rev. Lett. 2003, 91, 266102.
Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.
Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192.
Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett. 1997, 44, 83–87.
Choudhary, T. V.; Sivadinarayana, C.; Chusuei, C. C.; Datye, A. K.; Fackler, J. P., Jr.; Goodman, D. W. CO oxidation on supported nano-Au catalysts synthesized from a[Au6(PPh3)6](BF4)2 complex. J. Catal. 2002, 207, 247–255.
Hernández, N. C.; Sanz, J. F.; Rodriguez, J. A. Unravelling the origin of the high-catalytic activity of supported Au: A density-functional theory-based interpretation. J. Am. Chem. Soc. 2006, 128, 15600–15601.
Li, L.; Gao, Y.; Li, H.; Zhao, Y.; Pei, Y.; Chen, Z. F.; Zeng, X. C. CO oxidation on TiO2(110) supported subnanometer gold clusters: Size and shape effects. J. Am. Chem. Soc. 2013, 135, 19336–19346.
Liu, Z. -P.; Hu, P.; Alavi, A. Catalytic role of gold in gold-based catalysts: A density functional theory study on the CO oxidation on gold. J. Am. Chem. Soc. 2002, 124, 14770–14779.
Liu, C. Y.; Tan, Y. Z.; Lin, S. S.; Li, H.; Wu, X. J.; Li, L.; Pei, Y.; Zeng, X. C. CO self-promoting oxidation on nanosized gold clusters: Triangular Au3 active site and CO induced O–O scission. J. Am. Chem. Soc. 2013, 135, 2583–2595.
Wang, Y. -G.; Yoon, Y.; Glezakou, V. -A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.
Wang, Y. -G.; Cantu, D. -C.; Lee, M. -S.; Li, J.; Glezakou, V. -A.; Rousseau, R. CO oxidation on Au/TiO2: Condition- dependent active sites and mechanistic pathways. J. Am. Chem. Soc., in press, DOI: 10.1021/jacs.6b04187.
Chang, C. -R.; Wang, Y. -G.; Li, J. Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway. Nano Res. 2011, 4, 131–142.
Chang, C. -R.; Huang, Z. -Q.; Li, J. Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts. Nano Res. 2015, 8, 3737– 3748.
Chang, C. -R.; Huang, Z. -Q.; Li, J. The promotional role of water in heterogeneous catalysis: Mechanism insights from computational modeling. WIREs Comput. Mol. Sci., in press, DOI: 10.1002/wcms.1272.
Grau-Crespo, R.; Hernández, N. C.; Sanz, J. F.; de Leeuw, N. H. Theoretical investigation of the deposition of Cu, Ag, and Au atoms on the ZrO2(111) surface. J. Phys. Chem. C 2007, 111, 10448–10454.
Ghosh, P.; Farnesi Camellone, M.; Fabris, S. Fluxionality of Au clusters at ceria surfaces during CO oxidation: Relationships among reactivity, size, cohesion, and surface defects from DFT simulations. J. Phys. Chem. Lett. 2013, 4, 2256–2263.
Pillay, D.; Hwang, G. S. Growth and structure of small gold particles on rutile TiO2(110). Phys. Rev. B 2005, 72, 205422.
Vijay, A.; Mills, G.; Metiu, H. Adsorption of gold on stoichiometric and reduced rutile TiO2(110) surfaces. J. Chem. Phys. 2003, 118, 6536–6551.
Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T., Jr. Insights into catalytic oxidation at the Au/TiO2 dual perimeter sites. Acc. Chem. Res. 2014, 47, 805–815.
Green, I. X.; Tang, W. J.; McEntee, M.; Neurock, M.; Yates, J. T., Jr. Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. J. Am. Chem. Soc. 2012, 134, 12717–12723.
Aguilar-Guerrero, V.; Gates, B. C. Kinetics of CO oxidation catalyzed by highly dispersed CeO2-supported gold. J. Catal. 2008, 260, 351–357.
Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on gold nanoparticles: Theoretical studies. Appl. Catal. A 2005, 291, 13–20.
Zhou, Z.; Flytzani-Stephanopoulos, M.; Saltsburg, H. Decoration with ceria nanoparticles activates inert gold island/film surfaces for the CO oxidation reaction. J. Catal. 2011, 280, 255–263.
Bondzie, V. A.; Parker, S. C.; Campbell, C. T. The kinetics of CO oxidation by adsorbed oxygen on well-defined gold particles on TiO2(110). Catal. Lett. 1999, 63, 143–151.
Li, L.; Zeng, X. C. Direct simulation evidence of generation of oxygen vacancies at the golden cage Au16 and TiO2 (110) interface for CO oxidation. J. Am. Chem. Soc. 2014, 136, 15857–15.
Zhang, S. -R.; Nguyen, L.; Liang, J. -X.; Shan, J. -J.; Liu, J. -Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. -X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938,