AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

LiCoO2-catalyzed electrochemical oxidation of Li2CO3

Lijuan Fan1Daichun Tang2Deyu Wang3Zhaoxiang Wang1( )Liquan Chen1
Key Laboratory for Renewable EnergyChinese Academy of Sciences; Beijing Key Laboratory for New Energy Materials and Devices; Beijing National Laboratory for Condensed Matter Physics; Institute of PhysicsChinese Academy of SciencesP. O. Box 603Beijing100190China
Division of Electric Vehicle CellsNingde Contemporary Amperex Technology Co. Limited (CATL)Ningde352100China
Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
Show Author Information

Graphical Abstract

Abstract

Lithium carbonate (Li2CO3) is very common in various types of lithium (Li) batteries. As an insulating by-product of the oxygen reduction reaction on the cathode of a Li–air battery, it cannot be decomposed below 4.75 V (vs. Li+/Li) during recharge and leads to a large polarization, low coulombic efficiency, and low energy conversion efficiency of the battery. On the other hand, more than 10% of the Li ions from the cathode material are consumed during chemical formation of a Li-ion battery, resulting in low coulombic efficiency and/or energy density. Consequently, lithium compensation becomes essential to realize Li-ion batteries with a higher energy density and longer cycle life. Therefore, reducing the oxidation potential of Li2CO3 is significantly important. To address these issues, we show that the addition of nanoscaled LiCoO2 can effectively lower this potential to 4.25 V. On the basis of physical characterization and electrochemical evaluation, we propose the oxidization mechanism of Li2CO3. These findings will help to decrease the polarization of Li–air batteries and provide an effective strategy for efficient Li compensation for Li-ion batteries, which can significantly improve their energy density and increase their energy conversion efficiency and cycle life.

Electronic Supplementary Material

Download File(s)
nr-9-12-3903_ESM.pdf (1.2 MB)

References

1

Hu, X. F.; Zhu, Z. Q.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Micro- nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 11833– 11840.

2

Armand, M.; Tarascon, J. -M. Building better batteries. Nature 2008, 451, 652–657.

3

Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728.

4

Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

5

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

6

Zhai, D. Y.; Wang, H. -H.; Lau, K. C.; Gao, J.; Redfern, P. C.; Kang, F. Y.; Li, B. H.; Indacochea, E.; Das, U.; Sun, H. -H. et al. Raman evidence for late stage disproportionation in a Li-O2 battery. J. Phys. Chem. Lett. 2014, 5, 2705–2710.

7

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

8

McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.

9

Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

10

Zhang, T.; Zhou, H. S. A reversible long-life lithium-air battery in ambient air. Nat. Commun. 2013, 4, 1817.

11

Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A., 3rd; Kim, H.; Kang, K. Toward a lithium-"air" battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 2013, 135, 9733–9742.

12

Takechi, K.; Shiga, T.; Asaoka, T. A Li-O2/CO2 battery. Chem. Commun. 2011, 47, 3463–3465.

13

Ling, C.; Zhang, R. G.; Takechi, K.; Mizuno, F. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 2014, 118, 26591–26598.

14

Yang, S. X.; He, P.; Zhou, H. S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 2016, 9, 1650–1654.

15

Gowda, S. R.; Brunet, A.; Wallraff, G. M.; McCloskey, B. D. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2013, 4, 276–279.

16

Lu, Y. -C.; Crumlin, E. J.; Carney, T. J.; Baggetto, L.; Veith, G. M.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y. Influence of hydrocarbon and CO2 on the reversibility of Li-O2 chemistry using in situ ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 2013, 117, 25948–25954.

17

Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332–6341.

18

Hagelin-Weaver, H. A. E.; Hoflund, G. B.; Minahan, D. A.; Salaita, G. N. Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar+ bombardment. Appl. Surf. Sci. 2004, 235, 420–448.

19

Tian, N.; Hua, C. X.; Wang, Z. X.; Chen, L. Q. Reversible reduction of Li2CO3. J. Mater. Chem. A 2015, 3, 14173–14177.

20

Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.

21

Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

22

Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

23

Okuoka, S.; Ogasawara, Y.; Suga, Y.; Hibino, M.; Kudo, T.; Ono, H.; Yonehara, K.; Sumida, Y.; Yamada, Y.; Yamada, A. et al. A new sealed lithium-peroxide battery with a Co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte. Sci. Rep. 2014, 4, 5684.

24

Kang, S. G.; Kang, S. Y.; Ryu, K. S.; Chang, S. H. Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method. Solid State Ionics 1999, 120, 155–161.

25

Wang, R.; Yu, X. Q.; Bai, J. M.; Li, H.; Huang, X. J.; Chen, L. Q.; Yang, X. Q. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes. J. Power Sources 2012, 218, 113–118.

26

Shu, J.; Shui, M.; Huang, F. T.; Ren, Y. L.; Wang, Q. C.; Xu, D.; Hou, L. A new look at lithium cobalt oxide in a broad voltage range for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 3323–3328.

27

Xu, H. Y.; Xie, S.; Wang, Q. Y.; Yao, X. L.; Wang, Q. S.; Chen, C. H. Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO2 cathode. Electrochim. Acta 2006, 52, 636–642.

28

Aurbach, D.; Markovsky, B.; Rodkin, A.; Cojocaru, M.; Levi, E.; Kim, H. -J. An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim. Acta 2002, 47, 1899–1911.

29

Patel, V. K.; Saurav, J. R.; Gangopadhyay, K.; Gangopadhyay, S.; Bhattacharya, S. Combustion characterization and modeling of novel nanoenergetic composites of Co3O4/nAl. RSC Adv. 2015, 5, 21471–21479.

30

Xia, X. -H.; Tu, J. -P.; Zhang, Y. -Q.; Mai, Y. -J.; Wang, X. -L.; Gu, C. -D.; Zhao, X. -B. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2012, 2, 1835–1841.

31

Wang, Z. X.; Huang, X. J.; Chen, L. Q. Characterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithium-ion batteries. J. Electrochem. Soc. 2004, 151, A1641–A1652.

32

Wang, Z. X.; Chen, L. Q. Solvent storage-induced structural degradation of LiCoO2 for lithium ion batteries. J. Power Sources 2005, 146, 254–258.

33

Guo, B. K.; Liu, N.; Liu, J. Y.; Shi, H. J.; Wang, Z. X.; Chen, L. Q. Compatibility of Co3O4 with commercial electrolyte. Electrochem. Solid-State Lett. 2007, 10, A118–A121.

34

Markevich, E.; Salitra, G.; Aurbach, D. Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem. Commun. 2005, 7, 1298–1304.

35

Aurbach, D.; Markovsky, B.; Salitra, G.; Markevich, E.; Talyossef, Y.; Koltypin, M.; Nazar, L.; Ellis, B.; Kovacheva, D. Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources 2007, 165, 491–499.

36

Park, Y.; Shin, S. H.; Lee, S. M.; Kim, S. P.; Choi, H. C.; Jung, Y. M. 2D Raman correlation analysis of formation mechanism of passivating film on overcharged LiCoO2 electrode with additive system. J. Mol. Struct. 2014, 1069, 183–187.

37

Liu, N.; Li, H.; Wang, Z. X.; Huang, X. J.; Chen, L. Q. Origin of solid electrolyte interphase on nanosized LiCoO2. Electrochem. Solid-State Lett. 2006, 9, A328–A331.

38

Burba, C. M.; Shaju, K. M.; Bruce, P. G.; Frech, R. Infrared and Raman spectroscopy of nanostructured LT-LiCoO2 cathodes for Li-ion rechargeable batteries. Vib. Spectrosc. 2009, 51, 248–250.

39

Pasierb, P.; Komornicki, S.; Rokita, M.; Rękas, M. Structural properties of Li2CO3-BaCO3 system derived from IR and Raman spectroscopy. J. Mol. Struct. 2001, 596, 151–156.

40

Matsushita, T.; Dokko, K.; Kanamura, K. In situ FT-IR measurement for electrochemical oxidation of electrolyte with ethylene carbonate and diethyl carbonate on cathode active material used in rechargeable lithium batteries. J. Power Sources 2005, 146, 360–364.

41

Fukumitsu, H.; Omori, M.; Terada, K.; Suehiro, S. Development of in situ cross-sectional Raman imaging of LiCoO2 cathode for Li-ion battery. Electrochemistry 2015, 83, 993– 996.

42

Itoh, T.; Sato, H.; Nishina, T.; Matue, T.; Uchida, I. In situ Raman spectroscopic study of LixCoO2 electrodes in propylene carbonate solvent systems. J. Power Sources 1997, 68, 333–337.

43

Shibuya, M.; Nishina, T.; Matsue, T.; Uchida, I. In situ conductivity measurements of LiCoO2 film during lithium insertion/extraction by using interdigitated microarray electrodes. J. Electrochem. Soc. 1996, 143, 3157–3160.

44

Sifuentes, A.; Stowe, A. C.; Smyrl, N. Determination of the role of Li2O on the corrosion of lithium hydride. J. Alloys Compd. 2013, 580, S271–S273.

45

Bi, Y. J.; Wang, T.; Liu, M.; Du, R.; Yang, W. C.; Liu, Z. X.; Peng, Z.; Liu, Y.; Wang, D. Y.; Sun, X. L. Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Adv. 2016, 6, 19233–19237.

46

Duan, W. J.; Lu, S. H.; Wu, Z. L.; Wang, Y. S. Size effects on properties of NiO nanoparticles grown in alkalisalts. J. Phys. Chem. C 2012, 116, 26043–26051.

47

Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 2011, 133, 4404–4419.

48

Bai, Y.; Liu, N.; Liu, J. Y.; Wang, Z. X.; Chen, L. Q. Coating material-induced acidic electrolyte improves LiCoO2 performances. Electrochem. Solid-State Lett. 2006, 9, A552–A556.

Nano Research
Pages 3903-3913
Cite this article:
Fan L, Tang D, Wang D, et al. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Research, 2016, 9(12): 3903-3913. https://doi.org/10.1007/s12274-016-1259-7

834

Views

30

Crossref

N/A

Web of Science

30

Scopus

3

CSCD

Altmetrics

Received: 12 July 2016
Revised: 18 August 2016
Accepted: 21 August 2016
Published: 10 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return