AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy

Bingmei Sun1,2Jinrui Wu3Shaobin Cui2Huanhuan Zhu2Wei An3Qingge Fu4Chengwei Shao5Aihua Yao1( )Bingdi Chen2( )Donglu Shi2,6
School of Materials Science and Engineering,Tongji University, Caoan Road 4800,Shanghai,201804,China;
The Institute for Translational Nanomedicine,Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine,Shanghai,200120,China;
School of Mechanical Engineering,Tongji University,Shanghai,200092,China;
Department of Emergency,Changhai Hospital, Second Military Medical University,Shanghai,200433,China;
Radiology Department of Changhai Hosptial,Second Military Medical University,Shanghai,200433,China;
Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio 45221-0012, USA
Show Author Information

Graphical Abstract

Abstract

Graphene oxide/gold nanorod (GO/GNR) nanohybrids were synthesized with a GO- and gold-seed-mediated in situ growth method at room temperature by mixing polystyrene sulfonate (PSS) functionalized GO, secondary growth solution, and gold seeds. Compared with ex situ preparation methods of GO/GNRs or graphene (G)/GNRs, the in situ synthesis of GO/GNRs addressed the issue of the aggregation of the GNRs before their attachment onto the GO. The method is straightforward and environment-friendly. The GO/GNRs showed a remarkable photothermal effect in vitro. The temperature of the GO/GNR nanohybrids increased from 25 to 49.9 ℃ at a concentration of 50 μg/mL after irradiation with an 808-nm laser (0.4 W/cm2) for 6 min. Additionally, the GO/GNRs exhibited good optical and morphological stability and photothermal properties after six cycles of laser irradiation. Upon injection of the GO/GNRs into xenograft tumors, excellent computed tomography (CT) imaging properties and photothermal effect were obtained. The preclinical CT agent iohexol was combined with the GO/GNRs and further enhanced CT imaging. Therefore, the GO/GNR nanohybrids have great potential for precise CT-image-guided tumor photothermal treatment.

Electronic Supplementary Material

Download File(s)
nr-10-1-37_ESM.pdf (816.3 KB)

References

1

Choi, W. I.; Kim, J. Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tee, G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 2011, 5, 1995–2003.

2

Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.

3

Bagley, A. F.; Hill, S.; Rogers, G. S.; Bhatia, S. N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 2013, 7, 8089–8097.

4

Wang, B. K.; Yu, X. F.; Wang, J. H.; Li, Z. B.; Li, P. H.; Wang, H. Y.; Song, L.; Chu, P. K.; Li, C. Z. Gold-nanorods-sirna nanoplex for improved photothermal therapy by gene silencing. Biomaterials 2016, 78, 27–39.

5

Wang, N. N.; Zhao, Z. L.; Lv, Y. F.; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 2014, 7, 1291–1301.

6

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

7

Busbee, B. D.; Obare, S. O.; Murphy, C. J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003, 15, 414–416.

8

Xiao, Y. L.; Hong, H.; Matson, V. Z.; Javadi, A.; Xu, W. J.; Yang, Y. A.; Zhang, Y.; Engle, J. W.; Nickles, R. J.; Cai, W. B. et al. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2012, 2, 757–768.

9

Huang, H. C.; Barua, S.; Kay, D. B.; Rege, K. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano 2010, 4, 1769–1770.

10

Parab, H. J.; Chen, H. M.; Lai, T.-C.; Huang, J. H.; Chen, P. H.; Liu, R.-S.; Hsiao, M.; Chen, C.-H.; Tsai, D.-P.; Hwu, Y.-K. Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J. Chem. Phys. C 2009, 113, 7574–7578.

11

Apte, A.; Bhaskar, P.; Das, R.; Chaturvedi, S.; Poddar, P.; Kulkarni, S. Self-assembled vertically aligned gold nanorod superlattices for ultra-high sensitive detection of molecules. Nano Res. 2015, 8, 907–919.

12

Jokerst, J. V.; Cole, A. J.; Van de Sompel, D.; Gambhir, S. S. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 2012, 6, 10366–10377.

13

Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

14

He, W.; Henne, W. A.; Wei, Q. S.; Zhao, Y.; Doorneweerd, D. D.; Cheng, J.-X.; Low, P. S.; Wei, A. Two-photon luminescence imaging of bacillus spores using peptidefunctionalized gold nanorods. Nano Res. 2008, 1, 450–456.

15

Dou, Y.; Guo, Y. Y.; Li, X. D.; Li, X.; Wang, S.; Wang, L.; Lv, G. X.; Zhang, X. N.; Wang, H. J.; Gong, X. Q. et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano 2016, 10, 2536–2548.

16

Meir, R.; Shamalov, K.; Betzer, O.; Motiei, M.; Horovitz-Fried, M.; Yehuda, R.; Popovtzer, A.; Popovtzer, R.; Cohen, C. J. Nanomedicine for cancer immunotherapy: Tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 2015, 9, 6363–6372.

17

Zhang, J. M.; Li, C.; Zhang, X.; Huo, S. D.; Jin, S. B.; An, F. F.; Wang, X. D.; Xue, X. D.; Okeke, C. I.; Duan, G. Y. et al. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials 2015, 42, 103–111.

18

Zhang, Y. X.; Wen, S. H.; Zhao, L. Z.; Li, D.; Liu, C. C.; Jiang, W. B.; Gao, X.; Gu, W. T.; Ma, N.; Zhao, J. H. et al. Ultrastable polyethyleneimine-stabilized gold nanoparticles modified with polyethylene glycol for blood pool, lymph node and tumor CT imaging. Nanoscale 2016, 8, 5567–5577.

19

Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555–8561.

20

Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

21

Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831.

22

Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

23

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

24

Zhou, X.; Laroche, F.; Lamers, G. E. M.; Torraca, V.; Voskamp, P.; Lu, T.; Chu, F. Q.; Spaink, H. P.; Abrahams, J. P.; Liu, Z. F. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 2012, 5, 703–709.

25

Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199–212.

26

Zedan, A. F.; Moussa, S.; Terner, J.; Atkinson, G.; El-Shall, M. S. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. ACS Nano 2013, 7, 627–636.

27

Moon, H.; Kumar, D.; Kim, H.; Sim, C.; Chang, J. H.; Kim, J. M.; Kim, H.; Lim, D. K. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 2015, 9, 2711–2719.

28
Turcheniuk, K.; Hage, C. H.; Spadavecchia, J.; Heliot, L.; Boukherroub, R.; Szunerits, S. Plasmonic photothermal therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Netherlands, 2015; pp 1–8.https://doi.org/10.1007/978-94-007-6178-0_100988-1
29

Song, J. B.; Yang, X. Y.; Jacobson, O.; Lin, L. S.; Huang, P.; Niu, G.; Ma, Q. J.; Chen, X. Y. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 2015, 9, 9199–9209.

30

Dembereldorj, U.; Choi, S. Y.; Ganbold, E. O.; Song, N. W.; Kim, D.; Choo, J.; Lee, S. Y.; Kim, S.; Joo, S. W. Gold nanorod-assembled pegylated graphene-oxide nanocomposites for photothermal cancer therapy. Photochem. Photobiol. 2014, 90, 659–666.

31

Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Grácio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21, 4796–4802.

32

Huang, J.; Zhang, L. M.; Chen, B. A.; Ji, N.; Chen, F. H.; Zhang, Y.; Zhang, Z. J. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale 2010, 2, 2733–2738.

33

Xu, C.; Yang, D. R.; Mei, L.; Li, Q. H.; Zhu, H. Z.; Wang, T. H. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 12911–12920.

34

Jin, Y. S.; Wang, J. R.; Ke, H. T.; Wang, S. M.; Dai, Z. F. Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 2013, 34, 4794–4802.

35

Shi, J. J.; Wang, L.; Zhang, J.; Ma, R.; Gao, J.; Liu, Y.; Zhang, C. F.; Zhang, Z. Z. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials 2014, 35, 5847–5861.

36

Chen, F.; Yang, Q.; Zhong, Y.; An, H. X.; Zhao, J. W.; Xie, T.; Xu, Q. X.; Li, X. M.; Wang, D. B.; Zeng, G. M. Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation. Water Res. 2016, 101, 555–563.

37

Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H. W.; Hu, Y. Z.; Ye, M. X. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339–349.

38

Hou, C. Y.; Quan, H. C.; Duan, Y. R.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. Facile synthesis of water-dispersible Cu2O nanocrystal-reduced graphene oxide hybrid as a promising cancer therapeutic agent. Nanoscale 2013, 5, 1227–1232.

39

Bai, J.; Liu, Y. W.; Jiang, X. E. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials 2014, 35, 5805–5813.

40

Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

41

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

42

Wang, L. M.; Jiang, X. M.; Ji, Y. L.; Bai, R.; Zhao, Y. L.; Wu, X. C.; Chen, C. Y. Surface chemistry of gold nanorods: Origin of cell membrane damage and cytotoxicity. Nanoscale 2013, 5, 8384–8391.

43

Edgar, J. A.; McDonagh, A. M.; Cortie, M. B. Formation of gold nanorods by a stochastic "popcorn" mechanism. ACS Nano 2012, 6, 1116–1125.

44

Morita, T.; Tanaka, E.; Inagaki, Y.; Hotta, H.; Shingai, R.; Hatakeyama, Y.; Nishikawa, K.; Murai, H.; Nakano, H.; Hino, K. Aspect-ratio dependence on formation process of gold nanorods studied by time-resolved distance distribution functions. J. Chem. Phys. C 2010, 114, 3804–3810.

Nano Research
Pages 37-48
Cite this article:
Sun B, Wu J, Cui S, et al. In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy. Nano Research, 2017, 10(1): 37-48. https://doi.org/10.1007/s12274-016-1264-x

716

Views

62

Crossref

N/A

Web of Science

67

Scopus

1

CSCD

Altmetrics

Received: 22 June 2016
Revised: 12 August 2016
Accepted: 26 August 2016
Published: 22 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return