AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability

Yu Gu1Zheng Jiao2Minghong Wu2Bin Luo3Yong Lei1Yong Wang2Lianzhou Wang3( )Haijiao Zhang1( )
Institute of Nanochemistry and Nanobiology,Shanghai University,Shanghai,200444,China;
School of Environmental and Chemical Engineering,Shanghai University,Shanghai,200444,China;
Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
Show Author Information

Graphical Abstract

Abstract

The assembly of hybrid nanomaterials has opened up a new direction for the construction of high-performance anodes for lithium-ion batteries (LIBs). In this work, we present a straightforward, eco-friendly, one-step hydrothermal protocol for the synthesis of a new type of Fe2O3-SnO2/graphene hybrid, in which zero-dimensional (0D) SnO2 nanoparticles with an average diameter of 8 nm and one-dimensional (1D) Fe2O3 nanorods with a length of ~150 nm are homogeneously attached onto two-dimensional (2D) reduced graphene oxide nanosheets, generating a unique point-line-plane (0D-1D-2D) architecture. The achieved Fe2O3-SnO2/graphene exhibits a well-defined morphology, a uniform size, and good monodispersity. As anode materials for LIBs, the hybrids exhibit a remarkable reversible capacity of 1, 530 mA·g−1 at a current density of 100 mA·g−1 after 200 cycles, as well as a high rate capability of 615 mAh·g−1 at 2, 000 mA·g−1. Detailed characterizations reveal that the superior lithium-storage capacity and good cycle stability of the hybrids arise from their peculiar hybrid nanostructure and conductive graphene matrix, as well as the synergistic interaction among the components.

Electronic Supplementary Material

Download File(s)
nr-10-1-121_ESM.pdf (1.4 MB)

References

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature2001, 414, 359−367.

2

Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590−593.

3

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

4

Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.; Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G. et al. Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 2013, 25, 6250–6255.

5

Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. W. Nanoporous metal/oxide hybrid electrodes for electrochemical super­capacitors. Nat. Nanotechnol. 2011, 6, 232–237.

6

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

7

Xu, X. D.; Cao, R. G.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988−4991.

8

Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; SubbaRao, G. V.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792−2799.

9

Lin, Y. M.; Abel, P. R.; Heller, A.; Mullins, C. B. α-Fe2O3 nanorods as anode material for lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2885−2891.

10

Deng, D.; Lee, J. Y. Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem. Mater. 2008, 20, 1841−1846.

11

Luo, B.; Qiu, T. F.; Hao, L.; Wang, B.; Jin, M. H.; Li, X. L.; Zhi, L. J. Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. J. Mater. Chem. 2016, 4, 362−367.

12

Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M. Graphene nanoribbon and nano­structured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001−6006.

13

Hertzberg, B.; Alexeev, A.; Yushin, G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 2010, 132, 8548−8549.

14

Xia, G. F.; Li, N.; Li, D. Y.; Liu, R. Q.; Wang, C.; Li, Q.; Lü, X. J.; Spendelow, J. S.; Zhang, J. L.; Wu, G. Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 8607−8614.

15

Yuan, Y.; Du, F. H.; Shen, X. P.; Ji, Z. Y.; Zhou, H.; Zhu, G. X. Porous SnO2-Fe2O3 nanocubes with improved electro­chemical performance for lithium ion batteries. Dalton Trans. 2014, 43, 17544−17550.

16

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183−191.

17

Luo, B.; Zhi, L. J. Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 2015, 8, 456−477.

18

Wang, D. H.; Choi, D.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G. et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907−914.

19

Zhang, H. J.; Tao, H. H.; Jiang, Y.; Jiao, Z.; Wu, M. H.; Zhao, B. Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2950–2955.

20

Luo, B.; Fang, Y.; Wang, B.; Zhou, J. S.; Song, H. H.; Zhi, L. J. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 2012, 5, 5226−5230.

21

Tang, J. J.; Yang, J.; Zhou, L. M.; Xie, J.; Chen, G. H.; Zhou, X. Y. Layer-by-layer self-assembly of a sandwich-like graphene wrapped SnOx@graphene composite as an anode material for lithium ion batteries. J. Mater. Chem. A 2014, 2, 6292−6295.

22

Liu, S. K.; Chen, Z. X.; Xie, K.; Li, Y. J.; Xu J.; Zheng, C. M. A facile one-step hydrothermal synthesis of α-Fe2O3 nanoplates imbedded in graphene networks with high-rate lithium storage and long cycle life. J. Mater. Chem. A2014, 2, 13942−13948.

23

Liu, S.; Wang, R. H.; Liu, M. M.; Lou, J. Q.; Jin, X. H.; Sun, J.; Gao, L. Fe2O3@SnO2 nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A2014, 2, 4598−4604.

24

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

25

Gao, R. M.; Zhang, H. J.; Yuan, S.; Shi, L. Y.; Wu, M. H.; Jiao, Z. Controllable synthesis of rod-like SnO2 nanoparticles with tunable length anchored onto graphene nanosheets for improved lithium storage capability. RSC Adv. 2016, 6, 4116−4127.

26

Zhou, Q.; Zhao, Z. B.; Wang, Z. Y.; Dong, Y. F.; Wang, X. Z.; Gogotsi, Y.; Qiu, J. S. Lowtemperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nanoscale 2014, 6, 2286−2291.

27

Wu, X. L.; Guo, Y. G.; Wan, L. J.; Hu, C. W. α-Fe2O3 nanostructures: Inorganic salt-controlled synthesis and their electrochemicalperformance toward lithium storage. J. Phys. Chem. C2008, 112, 16824–16829.

28

Chen, M. X.; Zhang, C. C.; Li, X. C.; Zhang, L.; Ma, Y. L.; Zhang, L.; Xu, X. Y.; Xia, F. L.; Wang, W.; Gao, J. P. A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels. J. Mater. Chem. A 2013, 1, 2869−2877.

29

Gu, Y.; Xu, Y.; Wang, Y. Graphene-wrapped CoS nano­particles for high-capacity lithium-ion storage. ACS Appl. Mater. Interfaces 2013, 5, 801−806.

30

Zhao, B.; Jiang, Y.; Zhang, H. J.; Tao, H. H.; Zhong, M. Y.; Jiao, Z. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 2009, 189, 462–466.

31

Xu, H. P.; Yuan, S.; Wang, Z. Y.; Zhao, Y.; Fang, J. H.; Shi, L. Y. Graphene anchored with ZrO2 nanoparticles as anodes of lithium ion batteries with enhanced electrochemical performance. RSC Adv. 2014, 4, 8472–8480.

32

Morgan, W. E.; van Wazer, J. R. Binding energy shifts in the X-ray photoelectron spectra of a series of related group IVa compounds. J. Phys. Chem. 1973, 77, 964–969.

33

Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941–3946.

34

Zhou, L.; Wu, H. B.; Zhu, T.; Lou, X. W. Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J. Mater. Chem. 2012, 22, 827–829.

35

Zou, Y. Q.; Kan, J.; Wang, Y. Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. J. Phys. Chem. C 2011, 115, 20747–20753.

36

Bai, S.; Chen, S. Q.; Shen, X. P.; Zhu, G. X.; Wang, G. X. Nanocomposites of hematite (α-Fe2O3) nanospindles with crumpled reduced graphene oxide nanosheets as high- performance anode material for lithium-ion batteries. RSC Adv. 2012, 2, 10977–10984.

37

Li, X. Y.; Ma, Y. Y.; Qin, L.; Zhang, Z. Y.; Zhang, Z.; Zheng, Y. Z.; Qu, Y. Q. A bottom-up synthesis of α-Fe2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. J. Mater. Chem. A 2015, 3, 2158–2165.

38

Zhang, Y. J.; Jiang, L.; Wang, C. R. Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 20061−20065.

39

Cai, D. P.; Yang, T.; Wang, D. D.; Duan, X. C.; Liu, B.; Wang, L. L.; Liu, Y.; Li, Q. H.; Wang, T. H. Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 2015, 159, 46–51.

40

Lu, X. X.; Yang, F.; Geng, X.; Xiao, P. Enhanced cyclability of amorphous carbon-coated SnO2-graphene composite as anode for Li-ion batteries. Electrochim. Acta 2014, 147, 596–602.

41

Xin, F. X.; Tian, H. J.; Wang, X. L.; Xu, W.; Zheng, W. G.; Han, W. Q. Enhanced electrochemical performance of Fe0.74Sn5@reduced graphene oxide nanocomposite anodes for both Li-ion and Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 7912−7919.

42

Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306−5313.

43

Ding, S. J.; Luan, D. Y.; Boey, F. Y. C.; Chen, J. S.; Lou, X. W. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 2011, 47, 7155−7157.

Nano Research
Pages 121-133
Cite this article:
Gu Y, Jiao Z, Wu M, et al. Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. Nano Research, 2017, 10(1): 121-133. https://doi.org/10.1007/s12274-016-1271-y

686

Views

38

Crossref

N/A

Web of Science

41

Scopus

3

CSCD

Altmetrics

Received: 15 May 2016
Revised: 28 August 2016
Accepted: 31 August 2016
Published: 29 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return