AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures

Aihua Zhang1,§Mingzeng Peng1,§Morten Willatzen2( )Junyi Zhai1 ( )Zhong Lin Wang1,3 ( )
Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences; National Center for Nanoscience and Technology (NCNST),Beijing,100083,China;
Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain, in the framework of the 6 × 6 kp Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields to elucidate the effects of the piezoelectric potential and the deformation potential on the strain- dependent luminescence. The experimentally measured photoluminescence variation as a function of pressure can be qualitatively explained by the theoretical results.

References

1

Manasevit, H. M.; Gergis, I. S.; Jones, A. B. Electron mobility enhancement in epitaxial multilayer Si-Si1−x Gex alloy films on (100) Si. Appl. Phys. Lett. 1982, 41, 464–466.

2

Lee, M. L.; Fitzgerald, E. A.; Bulsara, M. T.; Currie, M. T.; Lochtefeld, A. Strained Si, SiGe, and Ge channels for high- mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2005, 97, 011101.

3

Sun, Y.; Thompson, S. E.; Nishida, T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2007, 101, 104503.

4

Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772.

5

Wu, W. Z.; Wei, Y. G.; Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 2010, 22, 4711–4715.

6

Peng, M. Z.; Liu, Y. D.; Yu, A. F.; Zhang, Y.; Liu, C. H.; Liu, J. Y.; Wu, W.; Zhang, K.; Shi, X. Q.; Kou, J. Z. et al. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 2016, 10, 1572–1579.

7

Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

8

Peng, M. Z.; Zhang, Y.; Liu, Y. D.; Song, M.; Zhai, J. Y.; Wang, Z. L. Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures. Adv. Mater. 2014, 26, 6767–6772.

9

Shi, X. Q.; Peng, M. Z.; Kou, J. Z.; Liu, C. H.; Wang, R.; Liu, Y. D.; Zhai, J. Y. A flexible GaN nanowire array-based Schottky-type visible light sensor with strain-enhanced photoresponsivity. Adv. Electron. Mater. 2015, 1, 1500169.

10

Hu, Y. F.; Zhang, Y.; Chang, Y. L.; Snyder, R. L.; Wang, Z. L. Optimizing the power output of a ZnO photocell by piezopotential. ACS Nano 2010, 4, 4220–4224.

11

Smith, C. S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42–49.

12
Bir, G. L.; Pikus, G. E. Symmetry and Strain-Induced Effects in Semiconductors; Wiley: New York, 1974.
13

Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

14

Zhang, Y.; Wang, Z. L. Theory of piezo-phototronics for light-emitting diodes. Adv. Mater. 2012, 24, 4712–4718.

15

Signorello, G.; Lörtscher, E.; Khomyakov, P. A.; Karg, S.; Dheeraj, D. L.; Gotsmann, B.; Weman, H.; Riel, H. Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat. Commun. 2014, 5, 3655.

16

Peng, M. Z.; Li, Z.; Liu, C. H.; Zheng, Q.; Shi, X. Q.; Song, M.; Zhang, Y.; Du, S. Y.; Zhai, J. Y.; Wang, Z. L. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 2015, 9, 3143–3150.

17

Chuang, S. L.; Chang, C. S. k⋅p method for strained wurtzite semiconductors. Phys. Rev. B 1996, 54, 2491–2504.

18

Kane, E. O. Band structure of indium antimonide. J. Phys. Chem. Solids 1957, 1, 249–261.

19

Makimoto, T.; Kumakura, K.; Nishida, T.; Kobayashi, N. Valence-band discontinuities between InGaN and GaN evaluated by capacitance-voltage characteristics of p-InGaN/ n-GaN diodes. J. Electron. Mater. 2002, 31, 313–315.

20

Vurgaftman, I.; Meyer, J. R. Band parameters for nitrogen- containing semiconductors. J. Appl. Phys. 2003, 94, 3675–3696.

Nano Research
Pages 134-144
Cite this article:
Zhang A, Peng M, Willatzen M, et al. Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures. Nano Research, 2017, 10(1): 134-144. https://doi.org/10.1007/s12274-016-1272-x

722

Views

7

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 25 June 2016
Revised: 29 August 2016
Accepted: 31 August 2016
Published: 29 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return