Graphical Abstract
![](https://wqketang.oss-cn-beijing.aliyuncs.com/zip-unzip/zip-429fa6db-8169-4490-a992-826f7c434970/nr-10-1-134/files/nr-10-1-134-FE1.jpg?Expires=1739826201&OSSAccessKeyId=STS.NSo6KSTGZtccwaQJjks2382px&Signature=R6SNt7cPN2xmoFi31fK8UxQ5hZ0%3D&security-token=CAISywJ1q6Ft5B2yfSjIr5DaffHnuZh7w6GIdUfgrmo%2Bf70f1%2Ffbmjz2IHtKenhsBOsbtfk1mG5W5%2FgZlqJ9SptIAEfJa9d99Mz9Kb8J2tCT1fau5Jko1beHewHKeTOZsebWZ%2BLmNqC%2FHt6md1HDkAJq3LL%2Bbk%2FMdle5MJqP%2B%2FUFB5ZtKWveVzddA8pMLQZPsdITMWCrVcygKRn3mGHdfiEK00he8TouufTinpHMskGA1Aell7Mvyt6vcsT%2BXa5FJ4xiVtq55utye5fa3TRYgxowr%2Fwo0v0YpGya5YzHXwcPskvdKZbo78UqLQlla6w%2BGqFJqvPxr%2Fp8t%2Fx5fWJKAezhVgs8cVM8JOjIqKOscIsiZsr0YBPWcD1LXoQ6vH1ZZ5%2FAzVZaVWUEMpNqcRxTMldXaQqhSZT8m3upKXzOJeX7ls9%2Fv%2FV7p9R6uVPUTzDnGoABsEoT%2Bo8%2FrO8uxnNJa0gQGNgYg%2F4ibzTt6TXotl%2F0%2BiZ3Bp9uN3%2BHM0Xisj0MhBdye4aDkrdci2LmqZW407e8phkkjwAsmLQPCzGNd8NEbG%2FI2AABc66uKkDu%2BiEaZbgiuY9%2Fep6Vpln3uatrdsQJEquhfONwHzXwAgtkuwcLlH4gAA%3D%3D)
Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain, in the framework of the 6 × 6 k∙p Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields to elucidate the effects of the piezoelectric potential and the deformation potential on the strain- dependent luminescence. The experimentally measured photoluminescence variation as a function of pressure can be qualitatively explained by the theoretical results.
Manasevit, H. M.; Gergis, I. S.; Jones, A. B. Electron mobility enhancement in epitaxial multilayer Si-Si1−x Gex alloy films on (100) Si. Appl. Phys. Lett. 1982, 41, 464–466.
Lee, M. L.; Fitzgerald, E. A.; Bulsara, M. T.; Currie, M. T.; Lochtefeld, A. Strained Si, SiGe, and Ge channels for high- mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2005, 97, 011101.
Sun, Y.; Thompson, S. E.; Nishida, T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2007, 101, 104503.
Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772.
Wu, W. Z.; Wei, Y. G.; Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 2010, 22, 4711–4715.
Peng, M. Z.; Liu, Y. D.; Yu, A. F.; Zhang, Y.; Liu, C. H.; Liu, J. Y.; Wu, W.; Zhang, K.; Shi, X. Q.; Kou, J. Z. et al. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 2016, 10, 1572–1579.
Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.
Peng, M. Z.; Zhang, Y.; Liu, Y. D.; Song, M.; Zhai, J. Y.; Wang, Z. L. Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures. Adv. Mater. 2014, 26, 6767–6772.
Shi, X. Q.; Peng, M. Z.; Kou, J. Z.; Liu, C. H.; Wang, R.; Liu, Y. D.; Zhai, J. Y. A flexible GaN nanowire array-based Schottky-type visible light sensor with strain-enhanced photoresponsivity. Adv. Electron. Mater. 2015, 1, 1500169.
Hu, Y. F.; Zhang, Y.; Chang, Y. L.; Snyder, R. L.; Wang, Z. L. Optimizing the power output of a ZnO photocell by piezopotential. ACS Nano 2010, 4, 4220–4224.
Smith, C. S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42–49.
Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.
Zhang, Y.; Wang, Z. L. Theory of piezo-phototronics for light-emitting diodes. Adv. Mater. 2012, 24, 4712–4718.
Signorello, G.; Lörtscher, E.; Khomyakov, P. A.; Karg, S.; Dheeraj, D. L.; Gotsmann, B.; Weman, H.; Riel, H. Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat. Commun. 2014, 5, 3655.
Peng, M. Z.; Li, Z.; Liu, C. H.; Zheng, Q.; Shi, X. Q.; Song, M.; Zhang, Y.; Du, S. Y.; Zhai, J. Y.; Wang, Z. L. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 2015, 9, 3143–3150.
Chuang, S. L.; Chang, C. S. k⋅p method for strained wurtzite semiconductors. Phys. Rev. B 1996, 54, 2491–2504.
Kane, E. O. Band structure of indium antimonide. J. Phys. Chem. Solids 1957, 1, 249–261.
Makimoto, T.; Kumakura, K.; Nishida, T.; Kobayashi, N. Valence-band discontinuities between InGaN and GaN evaluated by capacitance-voltage characteristics of p-InGaN/ n-GaN diodes. J. Electron. Mater. 2002, 31, 313–315.
Vurgaftman, I.; Meyer, J. R. Band parameters for nitrogen- containing semiconductors. J. Appl. Phys. 2003, 94, 3675–3696.