Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Though photodynamic therapy (PDT) has been widely used in the non-invasive destruction of solid tumors, the therapeutic efficacy of PDT is often limited by the hypoxic tumor environment. Herein, we report the innovative use of metformin, an oral hypoglycemic agent commonly used in the treatment of type II diabetes, to improve tumor oxygenation, and overcome tumor hypoxia-associated resistance to PDT. In our design, hydrophilic metformin and modified hydrophobic chlorin e6 (HCe6) are co-encapsulated within the inner cavity and outer membrane of liposomes, respectively. Due to the high uptake of liposome nanoparticles by tumors, and the sustained release of metformin, the intravenous administration of metformin (Met)-HCe6-Liposome nanoparticles greatly improves tumor oxygenation in several different tumor models, as revealed by in vivo photoacoustic imaging and ex vivo immunofluorescence staining. Systemic administration of Met-HCe6-Liposomes followed by in vivo PDT achieved significantly improved therapeutic effects compared to that of PDT without metformin. Hence, our study represents a new strategy for the improvement of PDT efficacy through the modulation of tumor oxygenation by clinically approved agents.
Yang, G. B.; Gong, H.; Qian, X. X.; Tan, P. L.; Li, Z. W.; Liu, T.; Liu, J. J.; Li, Y. Y.; Liu, Z. Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res. 2015, 8, 751–764.
Wang, C.; Cheng, L.; Liu, Y. M.; Wang, X. J.; Ma, X. X.; Deng, Z. Y.; Li, Y. G.; Liu, Z. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv. Funct. Mater. 2013, 23, 3077–3086.
Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y.; Gold nanorod−photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.
Bhaumik, J.; Mittal, A. K.; Banerjee, A.; Chisti, Y.; Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 2015, 8, 1373–1394.
Liao, Z. -X.; Li, Y. -C.; Lu, H. -M.; Sung, H. -W. A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials 2014, 35, 500–508.
Zhen, Z. P.; Tang, W.; Chuang, Y. J.; Todd, T.; Zhang, W. Z.; Lin, X.; Niu, G.; Liu, G.; Wang, L. C.; Pan, Z. W. et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 2014, 8, 6004–6013.
Hu, D. H.; Sheng, Z. H.; Gao, G. H.; Siu, F. M.; Liu, C. B.; Wan, Q.; Gong, P.; Zheng, H. R.; Ma, Y. F.; Cai, L. T. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer. Biomaterials 2016, 93, 10–19.
Foster, T. H.; Murant, R. S.; Bryant, R. G.; Knox, R. S.; Gibson, S. L.; Hilf, R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat. Res. 1991, 126, 296–303.
Henderson, B. W.; Gollnick, S. O.; Snyder, J. W.; Busch, T. M.; Kousis, P. C.; Cheney, R. T.; Morgan, J. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res. 2004, 64, 2120–2126.
Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.
Hu, Y. -L.; DeLay, M.; Jahangiri, A.; Molinaro, A. M.; Rose, S. D.; Carbonell, W. S.; Aghi, M. K. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 2012, 72, 1773–1783.
Ackerman, D.; Simon, M. C. Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment. Trends Cell Biol. 2014, 24, 472–478.
Parks, S. K.; Mazure, N. M.; Counillon, L.; Pouysségur, J. Hypoxia promotes tumor cell survival in acidic conditions by preserving ATP levels. J. Cell. Physiol. 2013, 228, 1854–1862.
Vaupel, P.; Mayer, A. Hypoxia in tumors: Pathogenesis- related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. In Oxygen Transport to Tissue XXXVI; Swartz, H. M.; Harrison, D. K.; Bruley, D. F., Eds.; Springer: New York, 2014; pp 19–24.
Ji, R. -C. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett. 2014, 346, 6–16.
Liu, Y. Y.; Liu, Y.; Bu, W. B.; Xiao, Q. F.; Sun, Y.; Zhao, K. L.; Fan, W. P.; Liu, J.; Shi, J. L. Radiation-/hypoxia- induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials 2015, 49, 1–8.
Liu, Y. Y.; Liu, Y.; Bu, W. B.; Cheng, C.; Zuo, C. J.; Xiao, Q. F.; Sun, Y.; Ni, D. L.; Zhang, C.; Liu, J. et al. Hypoxia induced by upconversion-based photodynamic therapy: Towards highly effective synergistic bioreductive therapy in tumors. Angew. Chem. 2015, 127, 8223–8227.
Horsman, M. R.; Mortensen, L. S.; Petersen, J. B.; Busk, M.; Overgaard, J. Imaging hypoxia to improve radiotherapy outcome. Nat. Rev. Clin. Oncol. 2012, 9, 674–687.
Meijer, T. W. H.; Kaanders, J. H. A. M.; Span, P. N.; Bussink, J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin. Cancer Res. 2012, 18, 5585–5594.
Milosevic, M.; Warde, P.; Ménard, C.; Chung, P.; Toi, A.; Ishkanian, A.; McLean, M.; Pintilie, M.; Sykes, J.; Gospodarowicz, M. et al. Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin. Cancer Res. 2012, 18, 2108–2114.
Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.
Luo, Z. Y.; Zheng, M. B.; Zhao, P. F.; Chen, Z.; Siu, F. M.; Gong, P.; Gao, G. H.; Sheng, Z. H.; Zheng, C. F.; Ma, Y. F. et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy. Sci. Rep. 2016, 6, 23393.
Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen- elevated synergetic therapy. Adv. Mater. 2015, 27, 4155–4161.
Prasad, P.; Gordijo, C. R.; Abbasi, A. Z.; Maeda, A.; Ip, A.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y. Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 2014, 8, 3202–3212.
Guimaraes, I. S.; Tessarollo, N. G.; Oliveira, L. F.; Zampier, R. C.; Silva, I. V.; Sternberg, C.; Rangel, L. B. Metformin inhibits proliferation and acts synergistically with paclitaxel and doxorubicin in triple negative breast cancer cell lines. Cancer Res. 2015, 75(15 Suppl), 2571.
Weinberg, S. E.; Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Boil. 2015, 11, 9–15.
Loubière, C.; Goiran, T.; Laurent, K.; Djabari, Z.; Tanti, J. -F.; Bost, F. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells. Oncotarget 2015, 6, 15652.
Morales, D. R.; Morris, A. D. Metformin in cancer treatment and prevention. Ann. Rev. Med. 2015, 66, 17–29.
Zannella, V. E.; Dal Pra, A.; Muaddi, H.; McKee, T. D.; Stapleton, S.; Sykes, J.; Glicksman, R.; Chaib, S.; Zamiara, P.; Milosevic, M. et al. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin. Cancer Res. 2013, 19, 6741–6750.
Muaddi, H.; Chowdhury, S.; Vellanki, R.; Zamiara, P.; Koritzinsky, M. Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin. Radiother. Oncol. 2013, 108, 446–450.
Li, H. W.; Chen, X. G.; Yu, Y.; Wang, Z. N.; Zuo, Y. F.; Li, S. H.; Yang, D. H.; Hu, S. W.; Xiang, M.; Xu, Z. M. et al. Metformin inhibits the growth of nasopharyngeal carcinoma cells and sensitizes the cells to radiation via inhibition of the DNA damage repair pathway. Oncol. Rep. 2014, 32, 2596–2604.
Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.
Yan, F.; Li, L.; Deng, Z. T.; Jin, Q. F.; Chen, J. J.; Yang, W.; Yeh, C. -K.; Wu, J. R.; Shandas, R.; Liu, X. et al. Paclitaxel-liposome-microbubble complexes as ultrasound- triggered therapeutic drug delivery carriers. J. Control. Release 2013, 166, 246–255.
Li, S. H.; Goins, B.; Zhang, L. J.; Bao, A. D. Novel multifunctional theranostic liposome drug delivery system: Construction, characterization, and multimodality MR, near- infrared fluorescent, and nuclear imaging. Bioconjugate Chem. 2012, 23, 1322–1332.
Barenholz, Y. C. Doxil®—the first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.
van der Meel, R.; Fens, M. H. A. M.; Vader, P.; van Solinge, W. W.; Eniola-Adefeso, O.; Schiffelers, R. M. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J. Control. Release 2014, 195, 72–85.
Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990, 268, 235– 237.
Pagel, M. D. Science to practice: Can Photoacoustic imaging be used to monitor tumor oxygenation and the effects of antivascular chemotherapies? Radiology 2015, 275, 1–2.
Shao, Q.; Morgounova, E.; Jiang, C. L.; Choi, J.; Bischof, J.; Ashkenazi, S. In vivo photoacoustic lifetime imaging of tumor hypoxia in small animals. J. Biomed. Opt. 2013, 18, 076019.
Pu, K.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.
Rich, L. J.; Seshadri, M. Photoacoustic imaging of vascular hemodynamics: Validation with blood oxygenation level- dependent MR imaging. Radiology 2015, 275, 110–118.
Burnett, J.; Sick, M.; Mendonca, M.; Stantz, K. Validating hemoglobin saturation and dissolved oxygen in tumors using the OxyLab probe and photoacoustic imaging. In The Summer Undergraduate Research Fellowship (SURF) Symposium, West Lafayette, IN, USA, 2014, 115.
Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631.
Eisenbrey, J. R.; Merton, D. A.; Marshall, A.; Liu, J. -B.; Fox, T. B.; Sridharan, A.; Forsberg, F. Comparison of photoacoustically derived hemoglobin and oxygenation measurements with contrast-enhanced ultrasound estimated vascularity and immunohistochemical staining in a breast cancer model. Ultrasonic Imaging 2015, 37, 42–52.
Needles, A.; Heinmiller, A.; Sun, J.; Theodoropoulos, C.; Bates, D.; Hirson, D.; Yin, M.; Foster, F. S. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 888–897.
Li, C. H.; Wang, L. V. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Boil. 2009, 54, R59–R97.
Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Cancer therapy: Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer (Adv. Mater. 14/2016). Adv. Mater. 2016, 28, 2654.