Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The presence of defects/vacancies in nanomaterials influences the electronic structure of materials, and thus, it is necessary to study the correlation between the optoelectronic properties of a nanomaterial and its defects/vacancies. Herein, we report a facile solvothermal route to synthesize three-dimensional (3D) SnS nanostructures formed by {131} faceted nanosheet assembly. The 3D SnS nanostructures were calcined at temperatures of 350, 400, and 450 ℃ and used as counter electrodes, before their photocurrent properties were investigated. First principle computation revealed the photocurrent properties depend on the defect/vacancy concentration within the samples. It is very interesting that characterization with positron annihilation spectrometry confirmed that the density of defects/vacancies increased with the calcination temperature, and a maximum photocurrent was realized after treatment at 400 ℃. Further, the defect/vacancy density decreased when the calcination temperature reached 450 ℃ as the higher calcination temperature enlarged the mesopores and densified the pore walls, which led to a lower photocurrent value at 450 ℃ than at 400 ℃.
Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 2010, 5, 326–329.
Yi, J. B.; Lim, C. C.; Xing, G. Z.; Fan, H. M.; Van, L. H.; Huang, S. L.; Yang, K. S.; Huang, X. L.; Qin, X. B.; Wang, B. Y. et al. Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys. Rev. Lett. 2010, 104, 137201.
Meng, W. W.; Saparov, B.; Hong, F.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 2016, 28, 821–829.
Sturza, M.; Allred, J. M.; Malliakas, C. D.; Bugaris, D. E.; Han, F.; Chung, D. Y.; Kanatzidis, M. G. Tuning the magnetic properties of new layered iron chalcogenides (BaF)2Fe2–xQ3 (Q = S, Se) by changing the defect concentration on the iron sublattice. Chem. Mater. 2015, 27, 3280–3290.
Jia, W.; Wu, Y. E.; Chen, Y. F.; He, D. S.; Li, J. P.; Wang, Y.; Wang, Z.; Zhu, W.; Chen, C.; Peng, Q. et al. Interface- induced formation of onion-like alloy nanocrystals by defects engineering. Nano Res. 2016, 9, 584–592.
Wang, H.; Zhang, J. J.; Hang, X. D.; Zhang, X. D.; Xie, J. F.; Pan, B. C.; Xie, Y. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew. Chem., Int. Ed. 2015, 54, 1195–1199.
Zheng, H. L.; Yang, B. S.; Wang, D. D.; Han, R. L.; Du, X. B.; Yan, Y. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 2014, 104, 132403.
Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy- induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.
Sevik, C.; Sevinçli, H.; Cuniberti, G.; Çağın, T. Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 2011, 11, 4971–4977.
Liang, W. J.; Rabin, O.; Hochbaum, A. I.; Fardy, M.; Zhang, M. J.; Yang, P. D. Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2009, 2, 394–399.
Chen, Z. X.; Huang, L.; Xi, Y. J.; Li, R.; Li, W. C.; Xu, G. Q.; Cheng, H. S. Geometrical structures, and electronic and transport properties of a novel two-dimensional β-GaS transparent conductor. Nano Res. 2015, 8, 3177–3185.
Rauch, T.; Böberl, M.; Tedde, S. F.; Fürst, J.; Kovalenko, M. V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 2009, 3, 332–336.
Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.
Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4061.
Liu, S.; Guo, X. Y.; Li, M. R.; Zhang, W. H.; Liu, X. Y.; Li, C. Solution-phase synthesis and characterization of single- crystalline SnSe nanowires. Angew. Chem., Int. Ed. 2011, 50, 12050–12053.
Zhang, J. B.; Gao, J. B.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010–6015.
Davis, N. J. L. K.; Böhm, M. L.; Tabachnyk, M.; Wisnivesky- Rocca-Rivarola, F.; Jellicoe, T. C.; Ducati, C.; Ehrler, B.; Greenham, N. C. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 2015, 6, 8259.
Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485–1490.
Mahjouri-Samani, M.; Gresback, R.; Tian, M. K.; Wang, K.; Puretzky, A. A.; Rouleau, C. M.; Eres, G.; Ivanov, I. N.; Xiao, K.; McGuire, M. A. et al. Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks. Adv. Funct. Mater. 2014, 24, 6365–6371.
Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.
Lei, S. D.; Ge, L. H.; Liu, Z.; Najmaei, S.; Shi, G.; You, G.; Lou, J.; Vajtai, R.; Ajayan, P. M. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 2013, 13, 2777–2781.
Hickey, S. G.; Waurisch, C.; Rellinghaus, B.; Eychmüller, A. Size and shape control of colloidally synthesized Ⅳ-Ⅵ nanoparticulate tin(Ⅱ) sulfide. J. Am. Chem. Soc. 2008, 130, 14978–14979.
Deng, Z. T.; Cao, D.; He, J.; Lin, S.; Lindsay, S. M.; Liu, Y. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 2012, 6, 6197–6207.
Yue, G. H.; Wang, L. S.; Wang, X.; Chen, Y. Z.; Peng, D. L. Characterization and optical properties of the single crystalline SnS nanowire arrays. Nanoscale Res. Lett. 2009, 4, 359–363.
Walsh, A.; Watson, G. W. Influence of the anion on lone pair formation in Sn(Ⅱ) monochalcogenides: A DFT study. J. Phys. Chem. B 2005, 109, 18868–18875.
Biacchi, A. J.; Vaughn, D. D., II; Schaak, R. E. Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: Evidence for a pseudotetragonal structural modification. J. Am. Chem. Soc. 2013, 135, 11634–11644.
Reddy, N. K.; Devika, M.; Ahsanulhaq, Q.; Gunasekhar, K. R. Growth of orthorhombic SnS nanobox structures on seeded substrates. Cryst. Growth Des. 2010, 10, 4769–4772.
Tripathi, A. M.; Mitra, S. Tin sulfide (SnS) nanorods: Structural, optical and lithium storage property study. RSC Adv. 2014, 4, 10358–10366.
Panda, S. K.; Datta, A.; Dev, A.; Gorai, S.; Chaudhuri, S. Surfactant-assisted synthesis of SnS nanowires grown on tin foils. Cryst. Growth Des. 2006, 6, 2177–2181.
Suryawanshi, S. R.; Warule, S. S.; Patil, S. S.; Patil, K. R.; More, M. A. Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior. ACS Appl. Mater. Interfaces 2014, 6, 2018–2025.
Yue, G. H.; Lin, Y. D.; Wen, X.; Wang, L. S.; Peng, D. L. SnS homojunction nanowire-based solar cells. J. Mater. Chem. 2012, 22, 16437–16441.
Xu, Y.; Al-Salim, N.; Bumby, C. W.; Tilley, R. D. Synthesis of SnS quantum dots. J. Am. Chem. Soc. 2009, 131, 15990– 15991.
Guo, X.; Xie, H. J.; Zheng, J. W.; Xu, H.; Wang, Q. K.; Li, Y. Q.; Lee, S. T.; Tang, J. X. The synthesis of multi- structured SnS nanocrystals toward enhanced performance for photovoltaic devices. Nanoscale 2015, 7, 867–871.
Chen, X.; Hou, Y.; Zhang, B.; Yang, X. H.; Yang, H. G. Low-cost SnSx counter electrodes for dye-sensitized solar cells. Chem. Commun. 2013, 49, 5793–5795.
Sinsermsuksakul, P.; Sun, L. Z.; Lee, S. W.; Park, H. H.; Kim, S. B.; Yang, C. X.; Gordon, R. G. Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 2014, 4, 1400496.
Zhang, Y. J.; Lu, J.; Shen, S. L.; Xu, H. R.; Wang, Q. B. Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47, 5226–5228.
Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 2013, 6, 55–64.
Li, G.; Liu, H. J. Improved electrode performance of mesoporous β-In2S3 microspheres for lithium ion batteries using carbon coated microspheres. J. Mater. Chem. 2011, 21, 18398–18402.
Kim, W. T.; Kim, C. D. Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis. J. Appl. Phys. 1986, 60, 2631–2633.
Liu, L.; Liu, H. J.; Kou, H. Z.; Wang, Y. Q.; Zhou, Z.; Ren, M. M.; Ge, M.; He, X. W. Morphology control of β-In2S3 from chrysanthemum-like microspheres to hollow microspheres: Synthesis and electrochemical properties. Cryst. Growth Des. 2009, 9, 113–117.
Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.
Xu, W.; Wang, Y.; Bai, X.; Dong, B.; Liu, Q.; Chen, J. S.; Song, H. W. Controllable synthesis and size-dependent luminescent properties of YVO4: Eu3+ nanospheres and microspheres. J. Phys. Chem. C 2010, 114, 14018–14024.
Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew. Chem., Int. Ed. 2006, 45, 755–759.
Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Rational screening low-cost counter electrodes for dye- sensitized solar cells. Nat. Commun. 2013, 4, 1583.
Ataee-Esfahani, H.; Imura, M.; Yamauchi, Y. All-metal mesoporous nanocolloids: Solution-phase synthesis of core–shell Pd@Pt nanoparticles with a designed concave surface. Angew. Chem., Int. Ed. 2013, 52, 13611–13615.
Hou, Y.; Chen, Z. P.; Wang, D.; Zhang, B.; Yang, S.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells. Small 2014, 10, 484–492.
Hauch, A.; Georg, A. Diffusion in the electrolyte and charge- transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 2001, 46, 3457–3466.
Calogero, G.; Calandra, P.; Irrera, A.; Sinopoli, A.; Citro, I.; Di Marco, G. A new type of transparent and low cost counter- electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1838–1844.
Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.
Xiao, C.; Qin, X. M.; Zhang, J.; An, R.; Xu, J.; Li, K.; Cao, B. X.; Yang, J. L.; Ye, B. J.; Xie, Y. High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. J. Am. Chem. Soc. 2012, 134, 18460– 18466.
Wang, Z. X.; Xu, K.; Li, Y. C.; Zhan, X. Y.; Safdar, M.; Wang, Q. S.; Wang, F. M.; He, J. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano 2014, 8, 4859– 4865.
Li, G.; Liu, M. Y.; Kou, H. Z. Mesoporous α-Fe2O3 nanospheres: Structural evolution and investigation of magnetic properties. Chem. —Eur. J. 2011, 17, 4323–4329.