AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Characterization of tin(Ⅱ) sulfide defects/vacancies and correlation with their photocurrent

Mingyang Liu1Luqing Wang1Linan Zhou2Sidong Lei1Jarin Joyner2Yingchao Yang1Robert Vajtai1( )Pulickel Ajayan1Boris I. Yakobson1( )Pol Spanos1
Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA
Department of Chemistry, Rice University, Houston, Texas 77005, USA
Show Author Information

Graphical Abstract

Abstract

The presence of defects/vacancies in nanomaterials influences the electronic structure of materials, and thus, it is necessary to study the correlation between the optoelectronic properties of a nanomaterial and its defects/vacancies. Herein, we report a facile solvothermal route to synthesize three-dimensional (3D) SnS nanostructures formed by {131} faceted nanosheet assembly. The 3D SnS nanostructures were calcined at temperatures of 350, 400, and 450 ℃ and used as counter electrodes, before their photocurrent properties were investigated. First principle computation revealed the photocurrent properties depend on the defect/vacancy concentration within the samples. It is very interesting that characterization with positron annihilation spectrometry confirmed that the density of defects/vacancies increased with the calcination temperature, and a maximum photocurrent was realized after treatment at 400 ℃. Further, the defect/vacancy density decreased when the calcination temperature reached 450 ℃ as the higher calcination temperature enlarged the mesopores and densified the pore walls, which led to a lower photocurrent value at 450 ℃ than at 400 ℃.

Electronic Supplementary Material

Download File(s)
nr-10-1-218_ESM.pdf (1.4 MB)

References

1

Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 2010, 5, 326–329.

2

Yi, J. B.; Lim, C. C.; Xing, G. Z.; Fan, H. M.; Van, L. H.; Huang, S. L.; Yang, K. S.; Huang, X. L.; Qin, X. B.; Wang, B. Y. et al. Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys. Rev. Lett. 2010, 104, 137201.

3

Meng, W. W.; Saparov, B.; Hong, F.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 2016, 28, 821–829.

4

Sturza, M.; Allred, J. M.; Malliakas, C. D.; Bugaris, D. E.; Han, F.; Chung, D. Y.; Kanatzidis, M. G. Tuning the magnetic properties of new layered iron chalcogenides (BaF)2Fe2–xQ3 (Q = S, Se) by changing the defect concentration on the iron sublattice. Chem. Mater. 2015, 27, 3280–3290.

5

Jia, W.; Wu, Y. E.; Chen, Y. F.; He, D. S.; Li, J. P.; Wang, Y.; Wang, Z.; Zhu, W.; Chen, C.; Peng, Q. et al. Interface- induced formation of onion-like alloy nanocrystals by defects engineering. Nano Res. 2016, 9, 584–592.

6

Wang, H.; Zhang, J. J.; Hang, X. D.; Zhang, X. D.; Xie, J. F.; Pan, B. C.; Xie, Y. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew. Chem., Int. Ed. 2015, 54, 1195–1199.

7

Zheng, H. L.; Yang, B. S.; Wang, D. D.; Han, R. L.; Du, X. B.; Yan, Y. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 2014, 104, 132403.

8

Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy- induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

9

Sevik, C.; Sevinçli, H.; Cuniberti, G.; Çağın, T. Phonon engineering in carbon nanotubes by controlling defect con­centration. Nano Lett. 2011, 11, 4971–4977.

10

Liang, W. J.; Rabin, O.; Hochbaum, A. I.; Fardy, M.; Zhang, M. J.; Yang, P. D. Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2009, 2, 394–399.

11

Chen, Z. X.; Huang, L.; Xi, Y. J.; Li, R.; Li, W. C.; Xu, G. Q.; Cheng, H. S. Geometrical structures, and electronic and transport properties of a novel two-dimensional β-GaS transparent conductor. Nano Res. 2015, 8, 3177–3185.

12

Rauch, T.; Böberl, M.; Tedde, S. F.; Fürst, J.; Kovalenko, M. V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 2009, 3, 332–336.

13

Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

14

Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4061.

15

Liu, S.; Guo, X. Y.; Li, M. R.; Zhang, W. H.; Liu, X. Y.; Li, C. Solution-phase synthesis and characterization of single- crystalline SnSe nanowires. Angew. Chem., Int. Ed. 2011, 50, 12050–12053.

16

Zhang, J. B.; Gao, J. B.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010–6015.

17

Davis, N. J. L. K.; Böhm, M. L.; Tabachnyk, M.; Wisnivesky- Rocca-Rivarola, F.; Jellicoe, T. C.; Ducati, C.; Ehrler, B.; Greenham, N. C. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 2015, 6, 8259.

18

Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485–1490.

19

Mahjouri-Samani, M.; Gresback, R.; Tian, M. K.; Wang, K.; Puretzky, A. A.; Rouleau, C. M.; Eres, G.; Ivanov, I. N.; Xiao, K.; McGuire, M. A. et al. Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks. Adv. Funct. Mater. 2014, 24, 6365–6371.

20

Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

21

Lei, S. D.; Ge, L. H.; Liu, Z.; Najmaei, S.; Shi, G.; You, G.; Lou, J.; Vajtai, R.; Ajayan, P. M. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 2013, 13, 2777–2781.

22

Hickey, S. G.; Waurisch, C.; Rellinghaus, B.; Eychmüller, A. Size and shape control of colloidally synthesized Ⅳ-Ⅵ nanoparticulate tin(Ⅱ) sulfide. J. Am. Chem. Soc. 2008, 130, 14978–14979.

23

Deng, Z. T.; Cao, D.; He, J.; Lin, S.; Lindsay, S. M.; Liu, Y. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 2012, 6, 6197–6207.

24

Yue, G. H.; Wang, L. S.; Wang, X.; Chen, Y. Z.; Peng, D. L. Characterization and optical properties of the single crystalline SnS nanowire arrays. Nanoscale Res. Lett. 2009, 4, 359–363.

25

Walsh, A.; Watson, G. W. Influence of the anion on lone pair formation in Sn(Ⅱ) monochalcogenides: A DFT study. J. Phys. Chem. B 2005, 109, 18868–18875.

26

Biacchi, A. J.; Vaughn, D. D., II; Schaak, R. E. Synthesis and crystallographic analysis of shape-controlled SnS nano­crystal photocatalysts: Evidence for a pseudotetragonal structural modification. J. Am. Chem. Soc. 2013, 135, 11634–11644.

27

Reddy, N. K.; Devika, M.; Ahsanulhaq, Q.; Gunasekhar, K. R. Growth of orthorhombic SnS nanobox structures on seeded substrates. Cryst. Growth Des. 2010, 10, 4769–4772.

28

Tripathi, A. M.; Mitra, S. Tin sulfide (SnS) nanorods: Structural, optical and lithium storage property study. RSC Adv. 2014, 4, 10358–10366.

29

Panda, S. K.; Datta, A.; Dev, A.; Gorai, S.; Chaudhuri, S. Surfactant-assisted synthesis of SnS nanowires grown on tin foils. Cryst. Growth Des. 2006, 6, 2177–2181.

30

Suryawanshi, S. R.; Warule, S. S.; Patil, S. S.; Patil, K. R.; More, M. A. Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior. ACS Appl. Mater. Interfaces 2014, 6, 2018–2025.

31

Yue, G. H.; Lin, Y. D.; Wen, X.; Wang, L. S.; Peng, D. L. SnS homojunction nanowire-based solar cells. J. Mater. Chem. 2012, 22, 16437–16441.

32

Xu, Y.; Al-Salim, N.; Bumby, C. W.; Tilley, R. D. Synthesis of SnS quantum dots. J. Am. Chem. Soc. 2009, 131, 15990– 15991.

33

Guo, X.; Xie, H. J.; Zheng, J. W.; Xu, H.; Wang, Q. K.; Li, Y. Q.; Lee, S. T.; Tang, J. X. The synthesis of multi- structured SnS nanocrystals toward enhanced performance for photovoltaic devices. Nanoscale 2015, 7, 867–871.

34

Chen, X.; Hou, Y.; Zhang, B.; Yang, X. H.; Yang, H. G. Low-cost SnSx counter electrodes for dye-sensitized solar cells. Chem. Commun. 2013, 49, 5793–5795.

35

Sinsermsuksakul, P.; Sun, L. Z.; Lee, S. W.; Park, H. H.; Kim, S. B.; Yang, C. X.; Gordon, R. G. Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 2014, 4, 1400496.

36

Zhang, Y. J.; Lu, J.; Shen, S. L.; Xu, H. R.; Wang, Q. B. Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47, 5226–5228.

37

Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 2013, 6, 55–64.

38

Li, G.; Liu, H. J. Improved electrode performance of meso­porous β-In2S3 microspheres for lithium ion batteries using carbon coated microspheres. J. Mater. Chem. 2011, 21, 18398–18402.

39

Kim, W. T.; Kim, C. D. Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis. J. Appl. Phys. 1986, 60, 2631–2633.

40

Liu, L.; Liu, H. J.; Kou, H. Z.; Wang, Y. Q.; Zhou, Z.; Ren, M. M.; Ge, M.; He, X. W. Morphology control of β-In2S3 from chrysanthemum-like microspheres to hollow micros­pheres: Synthesis and electrochemical properties. Cryst. Growth Des. 2009, 9, 113–117.

41

Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.

42

Xu, W.; Wang, Y.; Bai, X.; Dong, B.; Liu, Q.; Chen, J. S.; Song, H. W. Controllable synthesis and size-dependent luminescent properties of YVO4: Eu3+ nanospheres and microspheres. J. Phys. Chem. C 2010, 114, 14018–14024.

43

Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew. Chem., Int. Ed. 2006, 45, 755–759.

44

Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Rational screening low-cost counter electrodes for dye- sensitized solar cells. Nat. Commun. 2013, 4, 1583.

45

Ataee-Esfahani, H.; Imura, M.; Yamauchi, Y. All-metal mesoporous nanocolloids: Solution-phase synthesis of core–shell Pd@Pt nanoparticles with a designed concave surface. Angew. Chem., Int. Ed. 2013, 52, 13611–13615.

46

Hou, Y.; Chen, Z. P.; Wang, D.; Zhang, B.; Yang, S.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells. Small 2014, 10, 484–492.

47

Hauch, A.; Georg, A. Diffusion in the electrolyte and charge- transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 2001, 46, 3457–3466.

48

Calogero, G.; Calandra, P.; Irrera, A.; Sinopoli, A.; Citro, I.; Di Marco, G. A new type of transparent and low cost counter- electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1838–1844.

49

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

50

Xiao, C.; Qin, X. M.; Zhang, J.; An, R.; Xu, J.; Li, K.; Cao, B. X.; Yang, J. L.; Ye, B. J.; Xie, Y. High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. J. Am. Chem. Soc. 2012, 134, 18460– 18466.

51

Wang, Z. X.; Xu, K.; Li, Y. C.; Zhan, X. Y.; Safdar, M.; Wang, Q. S.; Wang, F. M.; He, J. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano 2014, 8, 4859– 4865.

52

Li, G.; Liu, M. Y.; Kou, H. Z. Mesoporous α-Fe2O3 nano­spheres: Structural evolution and investigation of magnetic properties. Chem. —Eur. J. 2011, 17, 4323–4329.

Nano Research
Pages 218-228
Cite this article:
Liu M, Wang L, Zhou L, et al. Characterization of tin(Ⅱ) sulfide defects/vacancies and correlation with their photocurrent. Nano Research, 2017, 10(1): 218-228. https://doi.org/10.1007/s12274-016-1279-3

707

Views

8

Crossref

N/A

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 17 August 2016
Revised: 28 August 2016
Accepted: 02 September 2016
Published: 20 October 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return