AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors

Ye Wu1,§Yi Wei1,§Yong Huang1Fei Cao1Dejian Yu1Xiaoming Li1,2( )Haibo Zeng1,2( )
Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering Nanjing University of Science and TechnologyNanjing 210094 China
State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Materials Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 210016 China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The rapid development of information technology has led to an urgent need for devices with fast information storage and processing, a high density, and low energy consumption. Memristors are considered to be next-generation memory devices with all of the aforementioned advantages. Recently, organometallic halide perovskites were reported to be promising active materials for memristors, although they have poor stability and mediocre performance. Herein, we report for the first time the fabrication of stable and high-performance memristors based on inorganic halide perovskite (CsPbBr3, CPB). The devices have electric field-induced bipolar resistive switching (ReS) and memory behaviors with a large on/off ratio (> 105), low working voltage (< 1 V) and energy consumption, long data retention (> 104 s), and high environmental stability, which are achieved via ZnO capping within the devices. Such a design can be adapted to various devices. Additionally, the heterojunction between the CPB and ZnO endows the devices with a light-induced ReS effect of more than 103 with a rapid response speed (< 1 ms), which enables us to tune the resistance state by changing the light and electric field simultaneously. Such multifunctional devices achieved by the combination of information storage and processing abilities have potential applications for future computing that transcends traditional architectures.

Electronic Supplementary Material

Download File(s)
nr-10-5-1584_ESM.pdf (1.7 MB)

References

1
von Neumann, J. First draft of a report on the EDVAC. In The Origins of Digital Computers: Selected Papers; Randell, B., Ed.; Springer: Berlin Heidelberg, 1982; pp 383–392.https://doi.org/10.1007/978-3-642-61812-3_30
2

Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36.

3

Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R 2014, 83, 1–59.

4

Xia, Q. F.; Robinett, W.; Cumbie, M. W.; Banerjee, N.; Cardinali, T. J.; Yang, J. J.; Wu, W.; Li, X. M.; Tong, W. M.; Strukov, D. B. et al. Memristor−CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 2009, 9, 3640–3645.

5

Song, S. J.; Seok, J. Y.; Yoon, J. H.; Kim, K. M.; Kim, G. H.; Lee, M. H.; Hwang, C. S. Real-time identification of the evolution of conducting nano-filaments in TiO2 thin film ReRAM. Sci. Rep. 2013, 3, 3443.

6

Chen, C.; Song, C.; Yang, J.; Zeng, F.; Pan, F. Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure. Appl. Phys. Lett. 2012, 100, 253509.

7

Chen, G.; Song, C.; Chen, C.; Gao, S.; Zeng, F.; Pan, F. Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv. Mater. 2012, 24, 3515–3520.

8

Jang, J.; Pan, F.; Braam, K.; Subramanian, V. Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications. Adv. Mater. 2012, 24, 3573–3576.

9

Carchano, H.; Lacoste, R.; Segui, Y. Bistable electrical switching in polymer thin films. Appl. Phys. Lett. 1971, 19, 414–415.

10

Pender, L. F.; Fleming, R. J. Memory switching in glow discharge polymerized thin films. J. Appl. Phys. 1975, 46, 3426–3431.

11

Kaji, H.; Kondo, H.; Fujii, T.; Arita, M.; Takahashi, Y. Effect of electrode and interface oxide on the property of ReRAM composed of Pr0.7Ca0.3MnO3. IOP Conf. Ser. : Mater. Sci. Eng. 2010, 8, 012032.

12

Wang, L.; Jin, K.-J.; Ge, C.; Wang, C.; Guo, H.-Z.; Lu, H.-B.; Yang, G.-Z. Electro-photo double modulation on the resistive switching behavior and switchable photoelectric effect in BiFeO3 films. Appl. Phys. Lett. 2013, 102, 252907.

13

Jia, C. H.; Sun, X. W.; Li, G. Q.; Chen, Y. H.; Zhang, W. F. Origin of attendant phenomena of bipolar resistive switching and negative differential resistance in SrTiO3: Nb/ZnO heterojunctions. Appl. Phys. Lett. 2014, 104, 043501.

14

Sekhar, K. C.; Silva, J. P. B.; Kamakshi, K.; Pereira, M.; Gomes, M. J. M. Semiconductor layer thickness impact on optical and resistive switching behavior of pulsed laser deposited BaTiO3/ZnO heterostructures. Appl. Phys. Lett. 2013, 102, 212903.

15

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

16

Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380.

17

Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

18

Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

19

Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015, 2, 1500194.

20

Gu, C. W.; Lee, J.-S. Flexible hybrid organic–inorganic perovskite memory. ACS Nano 2016, 10, 5413–5418.

21

Lin, C. C.; Tu, B. C.; Lin, C. H.; Lin, C. H.; Tseng, T. Y. Resistive switching mechanisms of V-doped SrZrO3 memory films. IEEE Elec. Dev. Lett. 2006, 27, 725–727.

22

Yan, K.; Peng, M.; Yu, X.; Cai, X.; Chen, S.; Hu, H. W.; Chen, B. X.; Gao, X.; Dong, B.; Zou, D. C. High-performance perovskite memristor based on methyl ammonium lead halides. J. Mater. Chem. C 2016, 4, 1375–1381.

23

Wang, Y.; Li, X. M.; Zhao, X.; Xiao, L.; Zeng, H. B; Sun, H. D. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016, 16, 448–453.

24

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

25

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

26

Lee, K.-T.; Guo, L. J.; Park, H. J. Neutral- and multi-colored semitransparent perovskite solar cells. Molecules 2016, 21, 475.

27

Li, X. M.; Yu, D. J.; Cao, F.; Gu, Y.; Wei, Y.; Wu, Y.; Song, J. Z.; Zeng, H. B. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Funct. Mater. 2016, 26, 5903–5912.

28

Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147.

29

Kato, Y. C.; Ono, L. K.; Lee, M. V.; Wang, S. H.; Raga, S. R.; Qi, Y. B. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2015, 2, 1500195.

30

Huang, Y.; Shen, Z. H.; Wu, Y.; Wang, X. Q.; Zhang, S. F.; Shi, X. Q.; Zeng, H. B. Amorphous ZnO based resistive random access memory. RSC Adv. 2016, 6, 17867–17872.

31

Fan, Y. S.; Liu, P. T. Characteristic evolution from rectifier Schottky diode to resistive-switching memory with Al-doped zinc tin oxide film. IEEE Trans. Elec. Dev. 2014, 61, 1071– 1076.

32

Yoo, E. J.; Lyu, M. Q.; Yun, J.-H.; Kang, C. J.; Choi, Y. J.; Wang, L. Z. Resistive switching behavior in organic–inorganic hybrid CH3NH3PbI3−XClX perovskite for resistive random access memory devices. Adv. Mater. 2015, 27, 6170–6175.

33

Lin, G. M.; Lin, Y. W.; Cui, R. L.; Huang, H.; Guo, X. H.; Li, C.; Dong, J. Q.; Guo, X. F.; Sun, B. Q. An organic- inorganic hybrid perovskite logic gate for better computing. J. Mater. Chem. C 2015, 3, 10793–10798.

34

Choi, J.; Park, S.; Lee, J.; Hong, K.; Kim, D.-H.; Moon, C. W.; Park, G. D.; Suh, J.; Hwang, J.; Kim, S. Y. et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv. Mater. 2016, 28, 6562–6567.

35

Kim, I.; Siddik, M.; Shin, J.; Biju, K. P.; Jung, S.; Hwang, H. Low temperature solution-processed graphene oxide/ Pr0.7Ca0.3MnO3 based resistive-memory device. Appl. Phys. Lett. 2011, 99, 042101.

36

Kim, C. H.; Ahn, Y.; Son, J. Y. SrTiO3-based resistive switching memory device with graphene nanoribbon electrodes. J. Am. Ceram. Soc. 2016, 99, 9–11.

37

Yoo, E.; Lyu, M. Q.; Yun, J.-H.; Kang, C. J.; Choi, Y.; Wang, L. Z. Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3–xClx/ FTO structure. J. Mater. Chem. C 2016, 4, 7824–7830.

38

Szmytkowski, J. The influence of the thickness, recombination and space charge on the loss of photocurrent in organic semiconductors: An analytical model. J. Phys. D: Appl. Phys. 2007, 40, 3352.

39

Xiao, Z. G.; Yuan, Y. B.; Shao, Y. C.; Wang, Q.; Dong, Q. F.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. S. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193–198.

40

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

41

Lin, C.-Y.; Wang, S.-Y.; Lee, D.-Y.; Tseng, T.-Y. Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J. Electrochem. Soc. 2008, 155, H615–H619.

42

Qian, L.; Zheng, Y.; Xue, J. E.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution- processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

43

Liu, Q.; Guan, W. H.; Long, S. B.; Jia, R.; Liu, M.; Chen, J. N. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 2008, 92, 012117.

Nano Research
Pages 1584-1594
Cite this article:
Wu Y, Wei Y, Huang Y, et al. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Research, 2017, 10(5): 1584-1594. https://doi.org/10.1007/s12274-016-1288-2
Part of a topical collection:

766

Views

142

Crossref

N/A

Web of Science

145

Scopus

0

CSCD

Altmetrics

Received: 20 July 2016
Revised: 07 September 2016
Accepted: 12 September 2016
Published: 17 October 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return