Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics

Geonwook Yoo1,§Heekyeong Park2,§Minjung Kim2,§Won Geun Song2Seokhwan Jeong2Min Hyung Kim3Hyungbeen Lee3Sang Woo Lee3Young Ki Hong2Min Goo Lee4Sungho Lee4()Sunkook Kim2()
School of Electronic Engineering Soongsil University Seoul 06978 Republic of Korea
Multi-Functional Nano/Bio Electronics Lab. Kyung Hee University Gyeonggi 17104 Republic of Korea
Department of Biomedical Engineering Yonsei University Wonju 26493 Republic of Korea
Korea Electronics Technology InstituteGyeonggi 13488 Republic of Korea

§ These authors contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

View original image Download original image

Abstract

Various approaches have been proposed for point-of-care diagnostics, and in particular, optical detection is preferred because it is relatively simple and fast. At the same time, field-effect transistor (FET)-based biosensors have attracted great attention because they can provide highly sensitive and label-free detection. In this work, we present highly sensitive, epidermal skin-type point-of-care devices with system-level integration of flexible MoS2 FET biosensors, read-out circuits, and light-emitting diode (LEDs) that enable real-time detection of prostate cancer antigens (PSA). Regardless of the physical forms or mechanical stress conditions, our proposed high-performance MoS2 biosensors can detect a PSA concentration of 1 pg·mL-1 without specific surface treatment for anti-PSA immobilization on the MoS2 surface on which we characterize and confirm physisorption of anti-PSA using Kelvin probe force microscopy (KPFM) and tapping-mode atomic force microscopy (tm-AFM). Furthermore, current modulation induced by the binding process was stably maintained for longer than 2-3 min. The results indicate that flexible MoS2-based FET biosensors have great potential for point-of-care diagnostics for prostate cancer as well as other biomarkers.

References

1

Özen, H.; Sözen, S. PSA isoforms in prostate cancer detection. Eur. Urol. Suppl. 2006, 5, 495-499.

2

Barbosa, A. I.; Gehlot, P.; Sidapra, K.; Edwards, A. D.; Reis, N. M. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron. 2015, 70, 5-14.

3

Taneja, S. S. Imaging in the diagnosis and management of prostate cancer. Rev. Urol. 2004, 6, 101-113.

4

Raja, J.; Ramachandran, N.; Munneke, G.; Patel, U. Current status of transrectal ultrasound-guided prostate biopsy in the diagnosis of prostate cancer. Clin. Radiol. 2006, 61, 142-153.

5

Hricak, H.; Choyke, P. L.; Eberhardt, S. C.; Leibel, S. A.; Scardino, P. T. Imaging prostate cancer: A multidisciplinary perspective. Radiology 2007, 243, 28-53.

6

Yacoub, J. H.; Verma, S.; Moulton, J. S.; Eggener, S.; Oto, A. Imaging-guided prostate biopsy: Conventional and emerging techniques. Radiographics 2012, 32, 819-837.

7

von Lode, P. Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 2005, 38, 591-606.

8

Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887-1892.

9

Oh, S. W.; Kim, Y. M.; Kim, H. J.; Kim, S. J.; Cho, J. S.; Choi, E. Y. Point-of-care fluorescence immunoassay for prostate specific antigen. Clin. Chim. Acta 2009, 406, 18-22.

10

Johnson, E. D.; Kotowski, T. M. Detection of prostate specific antigen by ELISA. J. Forensic Sci. 1993, 38, 250-258.

11

Healy, D. A.; Hayes, C. J.; Leonard, P.; McKenna, L.; O'Kennedy, R. Biosensor developments: Application to prostate-specific antigen detection. Trends Biotechnol. 2007, 25, 125-131.

12

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.

13

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.

14

Lee, K.; Nair, P. R.; Scott, A.; Alam, M. A.; Janes, D. B. Device considerations for development of conductance-based biosensors. J. Appl. Phys. 2009, 105, 102046.

15

Yang, W. R.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem., Int. Ed. 2010, 49, 2114-2138.

16

Kim, S.; Ju, S.; Back, J. H.; Xuan, Y.; Ye, P. D.; Shim, M.; Janes, D. B.; Mohammadi, S. Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes. Adv. Mater. 2009, 21, 564-568.

17

Kim, S.; Kim, S.; Park, J.; Ju, S.; Mohammadi, S. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. ACS Nano 2010, 4, 2994-2998.

18

Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano. 2014, 8, 3992-4003.

19

Wang, L.; Wang, Y.; Wong, J. I.; Palacios, T.; Kong, J.; Yang, H. Y. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 2014, 10, 1101-1105.

20

Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.

21

Kalantar-Zadeh, K.; Ou, J. Z. Biosensors based on two-dimensional MoS2. ACS Sens. 2016, 1, 5-16.

22

Jung, C.; Kim, S. M.; Moon, H.; Han, G.; Kwon, J.; Hong, Y. K.; Omkaram, I.; Yoon, Y.; Kim, S.; Park, J. Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 2015, 5, 15313.

23

Kim, S.; Konar, A.; Hwang,W.-S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo,J.-B.; Choi,J.-Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

24

Costantino, H. R.; Griebenow, K.; Langer, R.; Klibanov, A. M. On the pH memory of lyophilized compounds containing protein functional groups. Biotechnol. Bioeng. 1997, 53, 345-348.

25

Meyers, R. A. Molecular Biology and Biotechnology: A Comprehensive Desk Reference; Wiley-VCH: New York, 1995.

26

Okamoto, K.; Yoshimoto, K.; Sugawara, Y.; Morita, S. KPFM imaging of Si(1 1 1)53×53-Sb surface for atom distinction using NC-AFM. Appl. Surf. Sci. 2003, 210, 128-133.

27

Liscio, A.; Palermo, V.; Samorì, P. Probing local surface potential of quasi-one-dimensional systems: A KPFM study of P3HT nanofibers. Adv. Funct. Mater. 2008, 18, 907-914.

28

Bieletzki, M.; Hynninen, T.; Soini, T. M.; Pivetta, M.; Henry, C. R.; Foster, A. S.; Esch, F.; Barth, C.; Heiz, U. Topography and work function measurements of thin MgO(001) films on Ag(001) by Nc-AFM and KPFM. Phys. Chem. Chem. Phys. 2010, 12, 3203-3209.

29

Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 42104.

30

Song, W. G.; Kwon,H.-J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung,K.-U.; Grigoropoulos, C. P.; Kim, S. et al. High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 2016, 26, 2426-2434.

31

Hao, G. L.; Huang, Z. Y.; Liu, Y. D.; Qi, X.; Ren, L.; Peng, X. Y.; Yang, L. W.; Wei, X. L.; Zhong, J. X. Electrostatic properties of few-layer MoS2 films. AIP Adv. 2013, 3, 42125.

Nano Research
Pages 767-775
Cite this article:
Yoo G, Park H, Kim M, et al. Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics. Nano Research, 2017, 10(3): 767-775. https://doi.org/10.1007/s12274-016-1289-1
Metrics & Citations  
Article History
Copyright
Return