AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride

Ya-Fei Pan1Guang-Sheng Wang1( )Lei Liu2Lin Guo1Shu-Hong Yu2
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education,School of Chemistry and Environment, Beihang University,Beijing,100191,China;
Division of Nanomaterials and Chemistry,Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China,Hefei,230026,China;
Show Author Information

Graphical Abstract

Abstract

Arm symmetrical PbS dendrite (ASD-PbS) nanostructures can be prepared on a large scale by a solvothermal process. The ASD-PbSs exhibit a three-dimensional symmetrical structure, and each dendrite grows multiple branches on the main trunk. Such unique ASD-PbSs can be combined with polyvinylidene fluoride (PVDF) to prepare a composite material with enhanced dielectric and microwave-absorption properties. A detailed investigation of the dependence of the dielectric properties on the frequency and temperature shows that the ASD-PbS/PVDF composite has an ultrahigh dielectric constant and a low percolation threshold. The dielectric permittivity is as high as 1, 548 when the concentration of the ASD-PbS filler reaches 13.79 vol.% at 102 Hz, which is 150 times larger than that of pure PVDF, while the composite is as flexible as pure PVDF. Furthermore, the maximum reflection loss can reach -36.69 dB at 16.16 GHz with a filler content of only 2 wt.%, which indicates excellent microwave absorption. The loss mechanism is also elucidated. The present work demonstrates that the addition of metal sulfide microcrystals to polymer matrix composites provides a useful method for improving the dielectric and microwave-absorption properties.

Electronic Supplementary Material

Download File(s)
nr-10-1-284_ESM.pdf (2.3 MB)

References

1

Androulakis, J.; Todorov, I.; He, J. Q.; Chung, D. -Y.; Dravid, V.; Kanatzidis, M. Thermoelectrics from abundant chemical elements: High-performance nanostructured PbSe- PbS. J. Am. Chem. Soc. 2011, 133, 10920-10927.

2

Zhao, L. -D.; He, J. Q.; Wu, C. -I.; Hogan, T. P.; Zhou, X. Y.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Thermoelectrics with earth abundant elements: High performance p-type PbS nanostructured with SrS and CaS. J. Am. Chem. Soc. 2012, 134, 7902-7912.

3

Etgar, L.; Moehl, T.; Gabriel, S.; Hickey, S. G.; Eychmüller, A.; Grätzel, M. Light energy conversion by mesoscopic PbS quantum Dots/TiO2 heterojunction solar cells. ACS Nano 2012, 6, 3092-3099.

4

Hyun, B. -R.; Choi, J. J.; Seyler, K. L.; Hanrath, T.; Wise, F. W. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers. ACS Nano 2013, 7, 10938-10947.

5

Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. -A.; Lau, S. -P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878-5883.

6

Supran, G. J.; Song, K. W.; Hwang, G. W.; Correa, R. E.; Scherer, J.; Dauler, E. A.; Shirasaki, Y.; Bawendi, M. G.; Bulović, V. High-performance shortwave-infrared light- emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv. Mater. 2015, 27, 1437-1442.

7

Acharya, S.; Gautam, U. K.; Sasaki, T.; Bando, Y.; Golan, Y.; Ariga, K. Ultra narrow PbS nanorods with intense fluorescence. J. Am. Chem. Soc. 2008, 130, 4594-4595.

8

Bakulin, A. A.; Neutzner, S.; Bakker, H. J.; Ottaviani, L.; Barakel, D.; Chen, Z. Y. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices. ACS Nano 2013, 7, 8771-8779.

9

Querejeta-Fernández, A.; Hernández-Garrido, J. C.; Yang, H. X.; Zhou, Y. L.; Varela, A.; Parras, M.; Calvino-Gámez, J. J.; González-Calbet, J. M.; Green, P. F.; Kotov, N. A. Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano 2012, 6, 3800-3812.

10

Qi, L.; Lee, B. I.; Chen, S.; Samuels, W. D.; Exarhos, G. J. High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv. Mater. 2005, 17, 1777-1781.

11

Xu, J. W.; Wong, C. P. Low-loss percolative dielectric composite. Appl. Phys. Lett. 2005, 87, 082907.

12

Dang, Z. M.; Wang, L.; Yin, Y.; Zhang, Q.; Lei, Q. Q. Giant dielectric permittivities in functionalized carbon-nanotube/ electroactive-polymer nanocomposites. Adv. Mater. 2007, 19, 852-857.

13

Chu, B. J.; Zhou, X.; Ren, K. L.; Neese, B.; Lin, M. R.; Wang, Q.; Bauer, F.; Zhang, Q. M. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313, 334-336.

14

Neese, B.; Chu, B. J.; Lu, S. -G.; Wang, Y.; Furman, E.; Zhang, Q. M. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 2008, 321, 821-823.

15

He, F.; Lau, S.; Chan, H. L.; Fan, J. T. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 2009, 21, 710-715.

16

Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. -K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726-731.

17

Arbatti, M.; Shan, X.; Cheng, Z. Y. Ceramic-polymer composites with high dielectric constant. Adv. Mater. 2007, 19, 1369-1372.

18

Du, Z. -Y.; Xu, T. -T.; Huang, B.; Su, Y. -J.; Xue, W.; He, C. -T.; Zhang, W. -X.; Chen, X. -M. Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials. Angew. Chem., Int. Ed. 2015, 54, 914-918.

19

Dang, Z. -M.; Yuan, J. -K.; Yao, S. -H.; Liao, R. -J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334-6365.

20

Dang, Z. M.; Lin, Y. H.; Nan, C. W. Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 2003, 15, 1625-1629.

21

Wang, M. S.; Zhu, J. L.; Zhu, W. L.; Zhu, B.; Liu, J.; Zhu, X. H.; Pu, Y. T.; Sun, P.; Zeng, Z. F.; Li, X. H. et al. The formation of percolative composites with a high dielectric constant and high conductivity. Angew. Chem., Int. Ed. 2012, 51, 9123-9127.

22

Huang, X. Y.; Jiang, P. K. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 2015, 27, 546-554.

23

Nan, C. -W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 1993, 37, 1-116.

24

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high- efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484-3489.

25

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.

26

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486-490.

27

Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y., Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018-2025.

28

Kuang, D.; Xu, A.; Fang, Y.; Liu, H.; Frommen, C.; Fenske, D. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 2003, 15, 1747-1750.

29

Liu, X. F.; Cui, X. R.; Chen, Y. X.; Zhang, X. -J.; Yu, R. H.; Wang, G. -S.; Ma, H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 2015, 95, 870-878.

30

Wang, G. S.; Deng, Y.; Xiang, Y.; Guo, L. Fabrication of radial ZnO nanowire clusters and radial ZnO/PVDF composites with enhanced dielectric properties. Adv. Funct. Mater. 2008, 18, 2584-2592.

31

Dang, Z. -M.; Wang, H. -Y.; Zhang, Y. -H.; Qi, J. -Q. Morphology and dielectric property of homogenous BaTiO3/ PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Macromol. Rapid Commun. 2005, 26, 1185-1189.

32

Satish, B.; Sridevi, K.; Vijaya, M. S. Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J. Phys. D: Appl. Phys. 2002, 35, 2048-2050.

33

Wang, D. R.; Zhou, T.; Zha, J. -W.; Zhao, J.; Shi, C. -Y.; Dang, Z. -M. Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 2013, 1, 6162-6168.

34

Wang, G. S. Enhanced dielectric properties of three- phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3 + PVDF) and ZnO radial nanostructures. ACS Appl. Mater. Interfaces 2010, 2, 1290-1293.

35

Huang, X. Y.; Jiang, P. K.; Xie, L. Y. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl. Phys. Lett. 2009, 95, 242901.

36

Wang, D. R.; Bao, Y. R.; Zha, J. -W.; Zhao, J.; Dang, Z. -M.; Hu, G. -H. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)- functionalized graphene. ACS Appl. Mater. Interfaces 2012, 4, 6273-6279.

37

He, D. -X.; Qiu, Y.; Li, L. -L.; Zhao, R.; Xue, W. -D. Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption. Sci. China Mater. 2015, 58, 566-573.

38

Li, Y.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034-2045.

39

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704-716.

40

Song, W. -L.; Cao, M. -S.; Fan, L. -Z.; Lu, M. -M.; Li, Y.; Wang, C. -Y.; Ju, H. -F. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 2014, 77, 130-142.

41

Ortega, N.; Kumar, A.; Katiyar, R. S.; Rinaldi, C. Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 2009, 44, 5127-5142.

42

He, S.; Wang, G. -S.; Lu, C.; Liu, J.; Wen, B.; Liu, H.; Guo, L.; Cao, M. -S. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A 2013, 1, 4685-4692.

43

Mandal, P. K.; Lapanik, A.; Wipf, R.; Stuehn, B.; Haase, W. Sub-hertz relaxation process in chiral smectic mixtures doped with silver nanoparticles. Appl. Phys. Lett. 2012, 100, 073112.

44

Xu, P.; Han, X. J.; Wang, C.; Zhou, D. H.; Lv, Z. S.; Wen, A. H.; Wang, X. H.; Zhang, B. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 2008, 112, 10443-10448.

45

Qiang, R.; Du, Y. C.; Wang, Y.; Wang, N.; Tian, C. H.; Ma, J.; Xu, P.; Han, X. J. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 2016, 98, 599-606.

46

Liu, X. F.; Chen, Y. X.; Cui, X. R.; Zeng, M.; Yu, R. H.; Wang, G. -S. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 2015, 3, 12197-12204.

47

Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101-6109.

48

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214-1221.

49

Wang, G. -S.; Wu, Y. -Y.; Zhang, X. -J.; Li, Y.; Guo, L.; Cao, M. -S. Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties. J. Mater. Chem. A 2014, 2, 8644-8651.

50

Zhao, T. K.; Hou, C. L.; Zhang, H. Y.; Zhu, R. X.; She, S. F.; Wang, J. G.; Li, T. H.; Liu, Z. F.; Wei, B. Q. Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 2014, 4, 5619.

Nano Research
Pages 284-294
Cite this article:
Pan Y-F, Wang G-S, Liu L, et al. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Research, 2017, 10(1): 284-294. https://doi.org/10.1007/s12274-016-1290-8

725

Views

163

Crossref

N/A

Web of Science

163

Scopus

11

CSCD

Altmetrics

Received: 13 July 2016
Revised: 27 August 2016
Accepted: 14 September 2016
Published: 03 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return