Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Arm symmetrical PbS dendrite (ASD-PbS) nanostructures can be prepared on a large scale by a solvothermal process. The ASD-PbSs exhibit a three-dimensional symmetrical structure, and each dendrite grows multiple branches on the main trunk. Such unique ASD-PbSs can be combined with polyvinylidene fluoride (PVDF) to prepare a composite material with enhanced dielectric and microwave-absorption properties. A detailed investigation of the dependence of the dielectric properties on the frequency and temperature shows that the ASD-PbS/PVDF composite has an ultrahigh dielectric constant and a low percolation threshold. The dielectric permittivity is as high as 1, 548 when the concentration of the ASD-PbS filler reaches 13.79 vol.% at 102 Hz, which is 150 times larger than that of pure PVDF, while the composite is as flexible as pure PVDF. Furthermore, the maximum reflection loss can reach -36.69 dB at 16.16 GHz with a filler content of only 2 wt.%, which indicates excellent microwave absorption. The loss mechanism is also elucidated. The present work demonstrates that the addition of metal sulfide microcrystals to polymer matrix composites provides a useful method for improving the dielectric and microwave-absorption properties.
Androulakis, J.; Todorov, I.; He, J. Q.; Chung, D. -Y.; Dravid, V.; Kanatzidis, M. Thermoelectrics from abundant chemical elements: High-performance nanostructured PbSe- PbS. J. Am. Chem. Soc. 2011, 133, 10920-10927.
Zhao, L. -D.; He, J. Q.; Wu, C. -I.; Hogan, T. P.; Zhou, X. Y.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Thermoelectrics with earth abundant elements: High performance p-type PbS nanostructured with SrS and CaS. J. Am. Chem. Soc. 2012, 134, 7902-7912.
Etgar, L.; Moehl, T.; Gabriel, S.; Hickey, S. G.; Eychmüller, A.; Grätzel, M. Light energy conversion by mesoscopic PbS quantum Dots/TiO2 heterojunction solar cells. ACS Nano 2012, 6, 3092-3099.
Hyun, B. -R.; Choi, J. J.; Seyler, K. L.; Hanrath, T.; Wise, F. W. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers. ACS Nano 2013, 7, 10938-10947.
Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. -A.; Lau, S. -P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878-5883.
Supran, G. J.; Song, K. W.; Hwang, G. W.; Correa, R. E.; Scherer, J.; Dauler, E. A.; Shirasaki, Y.; Bawendi, M. G.; Bulović, V. High-performance shortwave-infrared light- emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv. Mater. 2015, 27, 1437-1442.
Acharya, S.; Gautam, U. K.; Sasaki, T.; Bando, Y.; Golan, Y.; Ariga, K. Ultra narrow PbS nanorods with intense fluorescence. J. Am. Chem. Soc. 2008, 130, 4594-4595.
Bakulin, A. A.; Neutzner, S.; Bakker, H. J.; Ottaviani, L.; Barakel, D.; Chen, Z. Y. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices. ACS Nano 2013, 7, 8771-8779.
Querejeta-Fernández, A.; Hernández-Garrido, J. C.; Yang, H. X.; Zhou, Y. L.; Varela, A.; Parras, M.; Calvino-Gámez, J. J.; González-Calbet, J. M.; Green, P. F.; Kotov, N. A. Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano 2012, 6, 3800-3812.
Qi, L.; Lee, B. I.; Chen, S.; Samuels, W. D.; Exarhos, G. J. High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv. Mater. 2005, 17, 1777-1781.
Xu, J. W.; Wong, C. P. Low-loss percolative dielectric composite. Appl. Phys. Lett. 2005, 87, 082907.
Dang, Z. M.; Wang, L.; Yin, Y.; Zhang, Q.; Lei, Q. Q. Giant dielectric permittivities in functionalized carbon-nanotube/ electroactive-polymer nanocomposites. Adv. Mater. 2007, 19, 852-857.
Chu, B. J.; Zhou, X.; Ren, K. L.; Neese, B.; Lin, M. R.; Wang, Q.; Bauer, F.; Zhang, Q. M. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313, 334-336.
Neese, B.; Chu, B. J.; Lu, S. -G.; Wang, Y.; Furman, E.; Zhang, Q. M. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 2008, 321, 821-823.
He, F.; Lau, S.; Chan, H. L.; Fan, J. T. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 2009, 21, 710-715.
Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. -K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726-731.
Arbatti, M.; Shan, X.; Cheng, Z. Y. Ceramic-polymer composites with high dielectric constant. Adv. Mater. 2007, 19, 1369-1372.
Du, Z. -Y.; Xu, T. -T.; Huang, B.; Su, Y. -J.; Xue, W.; He, C. -T.; Zhang, W. -X.; Chen, X. -M. Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials. Angew. Chem., Int. Ed. 2015, 54, 914-918.
Dang, Z. -M.; Yuan, J. -K.; Yao, S. -H.; Liao, R. -J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334-6365.
Dang, Z. M.; Lin, Y. H.; Nan, C. W. Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 2003, 15, 1625-1629.
Wang, M. S.; Zhu, J. L.; Zhu, W. L.; Zhu, B.; Liu, J.; Zhu, X. H.; Pu, Y. T.; Sun, P.; Zeng, Z. F.; Li, X. H. et al. The formation of percolative composites with a high dielectric constant and high conductivity. Angew. Chem., Int. Ed. 2012, 51, 9123-9127.
Huang, X. Y.; Jiang, P. K. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 2015, 27, 546-554.
Nan, C. -W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 1993, 37, 1-116.
Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high- efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484-3489.
Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.
Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486-490.
Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y., Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018-2025.
Kuang, D.; Xu, A.; Fang, Y.; Liu, H.; Frommen, C.; Fenske, D. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 2003, 15, 1747-1750.
Liu, X. F.; Cui, X. R.; Chen, Y. X.; Zhang, X. -J.; Yu, R. H.; Wang, G. -S.; Ma, H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 2015, 95, 870-878.
Wang, G. S.; Deng, Y.; Xiang, Y.; Guo, L. Fabrication of radial ZnO nanowire clusters and radial ZnO/PVDF composites with enhanced dielectric properties. Adv. Funct. Mater. 2008, 18, 2584-2592.
Dang, Z. -M.; Wang, H. -Y.; Zhang, Y. -H.; Qi, J. -Q. Morphology and dielectric property of homogenous BaTiO3/ PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Macromol. Rapid Commun. 2005, 26, 1185-1189.
Satish, B.; Sridevi, K.; Vijaya, M. S. Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J. Phys. D: Appl. Phys. 2002, 35, 2048-2050.
Wang, D. R.; Zhou, T.; Zha, J. -W.; Zhao, J.; Shi, C. -Y.; Dang, Z. -M. Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 2013, 1, 6162-6168.
Wang, G. S. Enhanced dielectric properties of three- phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3 + PVDF) and ZnO radial nanostructures. ACS Appl. Mater. Interfaces 2010, 2, 1290-1293.
Huang, X. Y.; Jiang, P. K.; Xie, L. Y. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl. Phys. Lett. 2009, 95, 242901.
Wang, D. R.; Bao, Y. R.; Zha, J. -W.; Zhao, J.; Dang, Z. -M.; Hu, G. -H. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)- functionalized graphene. ACS Appl. Mater. Interfaces 2012, 4, 6273-6279.
He, D. -X.; Qiu, Y.; Li, L. -L.; Zhao, R.; Xue, W. -D. Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption. Sci. China Mater. 2015, 58, 566-573.
Li, Y.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034-2045.
Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704-716.
Song, W. -L.; Cao, M. -S.; Fan, L. -Z.; Lu, M. -M.; Li, Y.; Wang, C. -Y.; Ju, H. -F. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 2014, 77, 130-142.
Ortega, N.; Kumar, A.; Katiyar, R. S.; Rinaldi, C. Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 2009, 44, 5127-5142.
He, S.; Wang, G. -S.; Lu, C.; Liu, J.; Wen, B.; Liu, H.; Guo, L.; Cao, M. -S. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A 2013, 1, 4685-4692.
Mandal, P. K.; Lapanik, A.; Wipf, R.; Stuehn, B.; Haase, W. Sub-hertz relaxation process in chiral smectic mixtures doped with silver nanoparticles. Appl. Phys. Lett. 2012, 100, 073112.
Xu, P.; Han, X. J.; Wang, C.; Zhou, D. H.; Lv, Z. S.; Wen, A. H.; Wang, X. H.; Zhang, B. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 2008, 112, 10443-10448.
Qiang, R.; Du, Y. C.; Wang, Y.; Wang, N.; Tian, C. H.; Ma, J.; Xu, P.; Han, X. J. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 2016, 98, 599-606.
Liu, X. F.; Chen, Y. X.; Cui, X. R.; Zeng, M.; Yu, R. H.; Wang, G. -S. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 2015, 3, 12197-12204.
Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101-6109.
Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214-1221.
Wang, G. -S.; Wu, Y. -Y.; Zhang, X. -J.; Li, Y.; Guo, L.; Cao, M. -S. Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties. J. Mater. Chem. A 2014, 2, 8644-8651.
Zhao, T. K.; Hou, C. L.; Zhang, H. Y.; Zhu, R. X.; She, S. F.; Wang, J. G.; Li, T. H.; Liu, Z. F.; Wei, B. Q. Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 2014, 4, 5619.