Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity

Ling MengZhiyu RenWei ZhouYang Qu()Guofeng Wang()
Key Laboratory of Functional Inorganic Material Chemistry,Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University,Harbin,150080,China;
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

An effective photocatalytic hydrogen production catalyst comprising MgTiO3/ MgTi2O5/TiO2 heterogeneous belt-junctions was prepared using magnesium ions by a thermally driven doping method. The tri-phase heterogeneous junction was confirmed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The as-prepared MgTiO3/MgTi2O5/ TiO2 heterojunctions exhibited a very high photocatalytic hydrogen production activity (356.1 mol∙g0.1gcat∙h−1) and an apparent quantum efficiency (50.69% at 365 nm) that is about twice of that of bare TiO2 nanobelts (189.4 mol∙g0.1gcat∙h−1). Linear sweep voltage and transient photocurrent characterization as well as analysis of the electrochemical impedance spectra and Mott-Schottky plots revealed that the high photocatalytic performance is caused by the one-dimensional structure, which imparts excellent charge transportation characteristic, and the MgTiO3/MgTi2O5/TiO2 tri-phase heterojunction, which effectively drives the charge separation through the inherent electric field. This titanate-based tri-phase heterogeneous junction photocatalyst further enriches the catalyst system for photocatalytic hydrogen production.

Electronic Supplementary Material

Download File(s)
nr-10-1-295_ESM.pdf (1.6 MB)

References

1

Chen, Y. G.; Zhao, S.; Wang, X.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. G.; Cao, X.; Zhang, L. B.; Zhou, G. et al. Synergetic integration of Cu1.94S-ZnxCd1-xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 2016, 138, 4286-4289.

2

Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175-183.

3

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

4

Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634-4639.

5

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution- based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30-46.

6

Xie, Y. J.; Zhang, X.; Ma, P. J.; Wu, Z. J.; Piao, L. Y. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 2015, 8, 2092-2101.

7

Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

8

Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. J. Hollow cobalt- based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359-1365.

9

Zhang, J. Q.; Huang, K. K.; Si, W. Z.; Wu, X. F.; Cheng, G.; Feng, S. H. Novel internal photoemission in manganite/ ZnO heterostructure. Sci. China Chem. 2013, 56, 583-587.

10
Wu, F. L.; Cao, F. R.; Liu, Q.; Lu, H.; Li, L. Enhancing photoelectrochemical activity with three-dimensional p-CuO/ n-ZnO junction photocathodes. Sci. China Mater., in press, DOI: 10.1007/s40843-016-5054-6.https://doi.org/10.1007/s40843-016-5054-6
11

Tan, H. Q.; Zhao, Z.; Zhu, W. B.; Coker, E. N.; Li, B. S.; Zheng, M.; Yu, W. X.; Fan, H. Y.; Sun, Z. C. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl. Mater. Interfaces 2014, 6, 19184-19190.

12

Hao, R.; Jiang, B. J.; Li, M. X.; Xie, Y.; Fu, H. G. Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Sci. China Mater. 2015, 58, 363-369.

13

Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509-9549.

14

Li, A.; Zou, J.; Han, X. D. Growth of Ⅲ-Ⅴ semiconductor nanowires and their heterostructures. Sci. China Mater. 2016, 59, 51-91.

15

Zhao, Z.; Zhang, X. Y.; Zhang, G. Q.; Liu, Z. Y.; Qu, D.; Miao, X.; Feng, P. Y.; Sun, Z. C. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 2015, 8, 4061-4071.

16

Wang, X. Y.; Cai, J. H.; Zhang, Y. J.; Li, L. H.; Jiang, L.; Wang, C. R. Heavy metal sorption properties of magnesium titanate mesoporous nanorods. J. Mater. Chem. A 2015, 3, 11796-11800.

17

Suzuki, Y.; Morimoto, M. Porous MgTi2O5/MgTiO3 composites with narrow pore-size distribution: In situ processing and pore structure analysis. J. Ceram. Soc. Jpn. 2010, 118, 819-822.

18

Song, N.; Liu, Y.; Liu, B. W.; Liu, Y. B.; Tan, Y. N.; Wei, W. F.; Luo, T. Controlled synthesis of platy potassium titanates from potassium magnesium titanate. RSC Adv. 2013, 3, 8326-8330.

19

Lou, H. F.; Wang, L. Q. A novel method to synthesize well- dispersed MgTiO3 nanoplatelets. Mater. Lett. 2015, 155, 91-93.

20

Zhang, N.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Res. 2016, 9, 726-734.

21

Yin, X.; Shi, J.; Niu, X. B.; Huang, H. C.; Wang, X. D. Wedding cake growth mechanism in one-dimensional and two-dimensional nanostructure evolution. Nano Lett. 2015, 15, 7766−7772.

22

Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One- dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326-3370.

23

Tang, Z. T.; Bao, J. K.; Wang, Z.; Bai, H.; Jiang, H.; Liu, Y.; Zhai, H. F.; Feng, C. M.; Xu, Z. A.; Cao, G. H. Superconductivity in quasi-one-dimensional Cs2Cr3As3 with large interchain distance. Sci. China Mater. 2015, 58, 16-20.

24

Wang, X. D.; Li, Z. D.; Shi, J.; Yu, Y. H. One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem. Rev. 2014, 114, 9346-9384.

25

Tian, J.; Zhao, Z. H.; Kumar, A.; Boughton, R. I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev. 2014, 43, 6920-6937.

26

Shi, Z. Y.; Wang, J.; Wang, W. X.; Zhang, Y. X.; Li, B.; Lu, Z. G.; Li, Y. D. Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti3+ as conduction pathways. Nano Res. 2016, 9, 353-362.

27

Passoni, L.; Ghods, F.; Docampo, P.; Abrusci, A.; Martí- Rujas, J.; Ghidelli, M.; Divitini, G.; Ducati, C.; Binda, M.; Guarnera, S. et al. Hyperbranched quasi-1d nanostructures for solid-state dye-sensitized solar cells. ACS Nano 2013, 7, 10023-10031.

28

Shen, Z. R.; Sun, S. T.; Wang, W. J.; Liu, J. W.; Liu, Z. F.; Yu, J. C. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 2015, 3, 3285-3288.

29

Qu, Y.; Zhou, W.; Xie, Y.; Jiang, L.; Wang, J. Q.; Tian, G. H.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. A novel phase-mixed MgTiO3-MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem. Commun. 2013, 49, 8510-8512.

30

Qu, Y.; Zhou, W.; Fu, H. G. Porous cobalt titanate nanorod: A new candidate for visible light-driven photocatalytic water oxidation. ChemCatChem 2014, 6, 265-270.

31

Tian, J.; Leng, Y. H.; Zhao, Z. H.; Xia, Y.; Sang, Y. H.; Hao, P.; Zhan, J.; Li, M. C.; Liu, H. Carbon quantum dots/ hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 2015, 11, 419-427.

32

Obregón, S.; Zhang, Y. F.; Colón, G. Cascade charge separation mechanism by ternary heterostructured BiPO4/ TiO2/g-C3N4 photocatalyst. Appl. Catal. B: Environ. 2016, 184, 96-103.

33

Li, H. J.; Zhou, Y.; Tu, W. G.; Ye, J. H.; Zou, Z. G. State- of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25, 998-1013.

34

Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223-1232.

35

Suresh, M. K.; Thomas, J. K.; Sreemoolanadhan, H.; George, C. N.; John, A.; Solomon, S.; Wariar, P. R. S.; Koshy, J. Synthesis of nanocrystalline magnesium titanate by an auto- igniting combustion technique and its structural, spectroscopic and dielectric properties. Mater. Res. Bull. 2010, 45, 761-765.

36

Zhang, N.; Zhang, K. F.; Zhou, W.; Jiang, B. J.; Pan, K.; Qu, Y.; Wang, G. F. Pure phase orthorhombic MgTi2O5 photocatalyst for H2 production. RSC Adv. 2015, 5, 106151-106155.

37

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.

Nano Research
Pages 295-304
Cite this article:
Meng L, Ren Z, Zhou W, et al. MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity. Nano Research, 2017, 10(1): 295-304. https://doi.org/10.1007/s12274-016-1292-6
Metrics & Citations  
Article History
Copyright
Return