AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties

Biao Zhao1,2( )Xiaoqin Guo1,2Wanyu Zhao3Jiushuai Deng4Bingbing Fan3Gang Shao3Zhongyi Bai1,2Rui Zhang1,3( )
Provincial Key Laboratory of Aviation Materials and Application Technology,Zhengzhou University of Aeronautics,Zhengzhou,450046,China;
School of Mechatronics Engineering,Zhengzhou University of Aeronautics,Zhengzhou,450046,China;
School of Materials Science and Engineering,Zhengzhou University,Zhengzhou,450001,China;
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Faculty of Land Resource Engineering, Kunming University of Science and Technology,Kunming,650093,China;
Show Author Information

Graphical Abstract

Abstract

Yolk-shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting composites were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, and powder X-ray diffraction. The core sizes, interstitial void volumes, and constituents of the yolk-shell structures varied by varying the reaction time. A mechanism based on the time-dependent experiments was proposed for the formation of the yolk-shell structures. The yolk-shell structures were formed by a synergistic combination of an etching reaction, a galvanic replacement reaction, and the Kirkendall effect. The yolk-shell ternary SnO2 (Ni3Sn2)@Ni composites synthesized at a reaction time of 15 h showed excellent microwave absorption properties. The reflection loss was found to be as low as -43 dB at 6.1 GHz. The enhanced microwave absorption properties may be attributed to the good impedance match, multiple reflections, the scattering owing to the voids between the core and the shell, and the effective complementarities between the dielectric loss and the magnetic loss. Thus, the yolk-shell ternary composites are expected to be promising candidates for microwave absorption applications, lithium ion batteries, and photocatalysis.

Electronic Supplementary Material

Download File(s)
nr-10-1-331_ESM.pdf (1.1 MB)

References

1

Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813-1822.

2

Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 2013, 25, 6905-6910.

3

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009-11017.

4

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214-1221.

5

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997-13006.

6

Tian, C. H.; Du, Y. C.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J. L.; Ma, J.; Zhao, H. T.; Han, X. J. constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090-20099.

7

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys. Chem. Chem. Phys. 2015, 17, 2531-2539.

8

Zhao, B.; Fan, B. B.; Shao, G.; Zhao, W. Y.; Zhang, R. Facile synthesis of novel heterostructure based on SnO2 nanorods grown on submicron ni walnut with tunable electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 2015, 7, 18815-18823.

9

Liu, J.; Qiao, S. Z.; Budi Hartono, S.; Lu, G. Q. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 2010, 49, 4981-4985.

10

Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. -C.; Cui, Y. Sulphur-TiO2 yolk- shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

11

Tan, L. F.; Chen, D.; Liu, H. Y.; Tang, F. Q. A silica nanorattle with a mesoporous shell: An ideal nanoreactor for the preparation of tunable gold cores. Adv. Mater. 2010, 22, 4885-4889.

12

Wu, S.; Dzubiella, J.; Kaiser, J.; Drechsler, M.; Guo, X. H.; Ballauff, M.; Lu, Y. Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew. Chem. Int. Ed. 2012, 51, 2229-2233.

13

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.

14

Liu, J. W.; Xu, J. J.; Che, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem. —Eur. J. 2013, 19, 6746-6752.

15

Liu, J. W.; Xu, J. J.; Che, R. C.; Chen, H. J.; Liu, Z. W.; Xia, F. Hierarchical magnetic yolk-shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. J. Mater. Chem. 2012, 22, 9277-9284.

16

Yu, M.; Liang, C. Y.; Liu, M. M.; Liu, X. L.; Yuan, K. P.; Cao, H.; Che, R. C. Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2014, 2, 7275-7283.

17

Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J. Phys. Chem. C 2013, 117, 489-495.

18

Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Interfaces 2013, 5, 2503-2509.

19

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Chen, Y. Q.; Zhang, R. Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv. 2015, 5, 9806-9814.

20

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 2004, 304, 711-714.

21

Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D. Formation of CeO2−ZrO2 solid solution nanocages with controllable structures via kirkendall effect. J. Am. Chem. Soc. 2008, 130, 2736-2737.

22

Mu, L. J.; Wang, F. D.; Sadtler, B.; Loomis, R. A.; Buhro, W. E. Influence of the nanoscale kirkendall effect on the morphology of copper indium disulfide nanoplatelets synthesized by ion exchange. ACS Nano 2015, 9, 7419- 7428.

23

Oh, M. H.; Yu, T.; Yu, S. -H.; Lim, B.; Ko, K. -T.; Willinger, M. -G.; Seo, D. -H.; Kim, B. H.; Cho, M. G.; Park, J. -H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 2013, 340, 964-968.

24

Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L. M. Monitoring galvanic replacement through three-dimensional morphological and chemical mapping. Nano Lett. 2014, 14, 3220-3226.

25

Liu, Y. L.; Hight Walker, A. R. Preferential outward diffusion of cu during unconventional galvanic replacement reactions between HAuCl4 and surface-limited Cu nanocrystals. ACS Nano 2011, 5, 6843-6854.

26

Nicolson, A. M.; Ross, G. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377-382.

27

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.

28

Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587-1593.

29

Lin, L.; Xing, H. L.; Shu, R. W.; Wang, L.; Ji, X. L.; Tan, D. X.; Gan, Y. Preparation and microwave absorption properties of multi-walled carbon nanotubes decorated with Ni-doped SnO2 nanocrystals. RSC Adv. 2015, 5, 94539-94550.

30

Chen, T. T.; Deng, F.; Zhu, J.; Chen, C. F.; Sun, G. B.; Ma, S. L.; Yang, X. J. Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190-15197.

31

Susman, M. D.; Popovitz-Biro, R.; Vaskevich, A.; Rubinstein, I. pH-dependent galvanic replacement of supported and colloidal Cu2O nanocrystals with gold and palladium. Small 2015, 11, 3942-3953.

32

Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762-16765.

33

Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale kirkendall effect. Chem. Mater. 2013, 25, 1179-1189.

34

Zhou, T. J.; Lu, M. H.; Zhang, Z. H.; Gong, H.; Chin, W. S.; Liu, B. Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. Adv. Mater. 2010, 22, 403-406.

35

Wang, H. K.; Rogach, A. L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 2013, 26, 123-133.

36

Zhao, B.; Zhao, W. Y.; Shao, G.; Fan, B. B.; Zhang, R. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. Dalton Trans. 2015, 44, 15984-15993.

37

Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets- assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830-15833.

38

Fu, J. J.; Chen, T.; Wang, M. D.; Yang, N. W.; Li, S. N.; Wang, Y.; Liu, X. D. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano 2013, 7, 11397-11408.

39

Hou, H. S.; Tang, X. N.; Guo, M. Q.; Shi, Y. Q.; Dou, P.; Xu, X. H. Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement. Mater. Lett. 2014, 128, 408-411.

40

Chen, J. Y.; Wiley, B.; McLellan, J.; Xiong, Y. J.; Li, Z. -Y.; Xia, Y. N. Optical properties of Pd−Ag and Pt−Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5, 2058-2062.

41

Seo, D.; Song, H. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J. Am. Chem. Soc. 2009, 131, 18210-18211.

42

Park, J.; Zheng, H. M.; Jun, Y. -W.; Alivisatos, A. P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943-13945.

43

Peng, S.; Sun, S. H. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4155-4158.

44

Yang, Y.; Yang, R. B.; Fan, H. J.; Scholz, R.; Huang, Z. P.; Berger, A.; Qin, Y.; Knez, M.; Gösele, U. Diffusion- facilitated fabrication of gold-decorated Zn2SiO4 nanotubes by a one-step solid-state reaction. Angew. Chem. Int. Ed. 2010, 49, 1442-1446.

45

Anderson, B. D.; Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 2014, 6, 12195-12216.

46

Cho, J. S.; Kang, Y. C. Nanofibers comprising yolk-shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the kirkendall diffusion effect and their electrochemical properties. Small 2015, 11, 4673-4681.

47

Whittaker, E. J. W.; Muntus, R. Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta 1970, 34, 945-956.

48

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120-8125.

49

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Time-sensitivity for the preparation and microwave absorption properties of core-shell structured Ni/TiO2 composite microspheres. J. Mater. Sci. Mater. Electron. 2015, 26, 8848-8853.

50

Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034- 2045.

51

Cao, M. -S.; Song, W. -L.; Hou, Z. -L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788-796.

52

Zhang, X. M.; Ji, G. B.; Liu, W.; Zhang, X. X.; Gao, Q. W.; Li, Y. C.; Du, Y. W. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 2016, 4, 1860-1870.

53

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401-405.

54

Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932-12942.

55

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Xie, Y. J.; Zhang, R. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 2015, 3, 10345- 10352.

56

Toneguzzo, P.; Viau, G.; Acher, O.; Fiévet-Vincent, F.; Fiévet, F. Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 1998, 10, 1032-1035.

57

Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018-2025.

58

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704-716.

59

Wang, Z. J.; Wu, L. N.; Zhou, J. G.; Cai, W.; Shen, B. Z.; Jiang, Z. H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber. J. Phys. Chem. C 2013, 117, 5446-5452.

60

Li, X. A.; Zhang, B.; Ju, C. H.; Han, X. J.; Du, Y. C.; Xu, P. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C 2011, 115, 12350-12357.

61

Zhao, B.; Fan, B. B.; Xu, Y. W.; Shao, G.; Wang, X. D.; Zhao, W. Y.; Zhang, R. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features. ACS Appl. Mater. Interfaces 2015, 7, 26217-26225.

62

Hong, X. Y.; Wang, Q.; Tang, Z. H.; Khan, W. Q.; Zhou, D. W.; Feng, T. F. Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping. J. Phys. Chem. C 2016, 120, 148-156.

63

Xing, H. L.; Liu, Z. F.; Lin, L.; Wang, L.; Tan, D. X.; Gan, Y.; Ji, X. L.; Xu, G. C. Excellent microwave absorption properties of Fe ion-doped SnO2/multi-walled carbon nanotube composites. RSC Adv. 2016, 6, 41656-41664.

64

Ma, J. J.; Zhan, M. S.; Wang, K. Ultralightweight silver nanowires hybrid polyimide composite foams for high- performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2015, 7, 563-576.

65

Yuan, K. P.; Che, R. C.; Cao, Q.; Sun, Z. K.; Yue, Q.; Deng, Y. H. Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres. ACS Appl. Mater. Interfaces 2015, 7, 5312-5319.

Nano Research
Pages 331-343
Cite this article:
Zhao B, Guo X, Zhao W, et al. Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Research, 2017, 10(1): 331-343. https://doi.org/10.1007/s12274-016-1295-3
Part of a topical collection:

926

Views

356

Crossref

N/A

Web of Science

355

Scopus

32

CSCD

Altmetrics

Received: 15 July 2016
Revised: 06 September 2016
Accepted: 24 September 2016
Published: 07 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return