Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hierarchically heterostructured hollow spheres are of great interest for a wide range of applications owing to their unique structural features and properties. However, the fabrication of well-defined hollow spheres with highly specific morphology for mixed transition metal oxides on a large scale remains challenging. In this work, uniform rambutan-like heterostructured CeO2-CuO hollow microspheres with numerous copper–ceria interfacial sites and nanorods and nanoparticles as building blocks are prepared via a facile hydrothermal method followed by calcination. Importantly, this approach can be readily scaled up and is applicable to the synthesis of various CuO-based mixed metal oxide complex hollow spheres. The as-prepared CeO2-CuO hollow rambutans exhibit superior performance both as electrode materials for supercapacitors and as Cu-based catalysts for the Rochow reaction, mainly due to the small primary nanoparticle constituents, high surface area, and formation of numerous interior heterostructures.
Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.
Gonzalez, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature. Science 2011, 334, 1377–1380.
Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbon- nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.
Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382–387.
Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/ nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.
Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.
Hu, J.; Chen, M.; Fang, X. S.; Wu, L. M. Fabrication and application of inorganic hollow spheres. Chem. Soc. Rev. 2011, 40, 5472–5491.
Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.
Yu, L.; Wu, H. B.; Lou, X. W. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv. Mater. 2013, 25, 2296–2300.
Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.
Ibáñez, M.; Cabot, A. All change for nanocrystals. Science 2013, 340, 935–936.
Zhang, L.; Wu, H. B.; Lou, X. W. Metal-organic- frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664– 10672.
Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.
Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111–1114.
Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 124, 7642–7943.
Pan, A. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 2226–2230.
Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.
Ding, Y.; Xia, X.; Chen, W. C.; Hu, L. H.; Mo, L.; Huang, Y.; Dai, S. Y. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high- efficiency dye-sensitized solar cells. Nano Res. 2016, 9, 1891–1903.
Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.
Wang, B.; Wu, H. B.; Zhang, L.; Lou, X. W. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem., Int. Ed. 2013, 52, 4165–4168.
Ma, F. X.; Hu, H.; Wu, H. B.; Xu, C. Y.; Xu, Z. C.; Zhen, L.; Lou, X. W. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 2015, 27, 4097–4101.
Carreon, M. A.; Guliants, V. V. Ordered meso- and macroporous binary and mixed metal oxides. Eur. J. Inorg. Chem. 2005, 2005, 27–43.
Morris, C. A.; Anderson, M. L.; Stroud, R. M.; Merzbacher, C. I.; Rolison, D. R. Silica sol as a nanoglue: Flexible synthesis of composite aerogels. Science 1999, 284, 622–624.
Zeng, M.; Li, Y. Z.; Mao, M. Y.; Bai, J. L.; Ren, L.; Zhao, X. J. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal. 2015, 5, 3278–3286.
Warule, S. S.; Chaudhari, N. S.; Kale, B. B.; Patil, K. R.; Koinkar, P. M.; More, M. A.; Murakami, R. Organization of cubic CeO2 nanoparticles on the edges of self assembled tapered ZnO nanorods via a template free one-pot synthesis: significant cathodoluminescence and field emission properties. J. Mater. Chem. 2012, 22, 8887–8895.
Hornés, A.; Hungría, A. B.; Bera, P.; López Cámara, A.; Fernández-García, M.; Martínez-Arias, A.; Barrio, L.; Estrella, M.; Zhou, G.; Fonseca, J. J. et al. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J. Am. Chem. Soc. 2010, 132, 34–35.
López Cámara, A.; Cortés Corberán, V.; Barrio, L.; Zhou, G.; Si, R.; Hanson, J. C.; Monte, M.; Conesa, J. C.; Rodriguez, J. A.; Martínez-Arias, A. Improving the CO-PROX performance of inverse CeO2/CuO catalysts: Doping of the CuO component with Zn. J. Phys. Chem. C 2014, 118, 9030–9041.
Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F. Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential oxidation of CO at low temperature. Angew. Chem., Int. Ed. 2012, 51, 12032–12035.
Liu, P.; Hensen, E. J. M. Highly efficient and robust Au/ MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032–14035.
Ma, J. H.; Jin, G. Z.; Gao, J. B.; Li, Y. Y.; Dong, L. H.; Huang, M. N.; Huang, Q. Q.; Li, B. Catalytic effect of two-phase intergrowth and coexistence CuO–CeO2. J. Mater. Chem. A 2015, 3, 24358–24370.
Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.
Avgouropoulos, G.; Ioannides, T. Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl. Catal. B: Environ. 2006, 67, 1–11.
Polster, C. S.; Nair, H.; Baertsch, C. D. Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst. J. Catal. 2009, 266, 308–319.
Kydd, R.; Teoh, W. Y.; Wong, K.; Wang, Y.; Scott, J.; Zeng, Q. -H.; Yu, A. -B.; Zou, J.; Amal, R. Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv. Funct. Mater. 2009, 19, 369–377.
Li, Z. Q.; Wang, H. L.; Zi, L. Y.; Zhang, J. J.; Zhang, Y. S. Preparation and photocatalytic performance of magnetic TiO2-Fe3O4/graphene (RGO) composites under VIS-light irradiation. Ceram. Int. 2015, 41, 10634–10643.
Shanmugavani, A. L.; Selvan, R. K. Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim. Acta 2016, 188, 852–862.
Hurd, D. T.; Rochow, E. G. On the mechanism of the reaction between methyl chloride and silicon-copper. J. Am. Chem. Soc. 1945, 67, 1057–1059.
Rochow, E. G. The direct synthesis of organosilicon compounds. J. Am. Chem. Soc. 1945, 67, 963–965.
Jin, Z. Y.; Li, J.; Shi, L. S.; Ji, Y. J.; Zhong, Z. Y.; Su, F. B. One-pot hydrothermal growth of raspberry-like CeO2 on CuO microsphere as copper-based catalyst for Rochow reaction. Appl. Sur. Sci. 2015, 359, 120–129.
Ward, W. J.; Ritzer, A.; Carroll, K. M.; Flock, J. W. Catalysis of the Rochow direct process. J. Catal. 1986, 100, 240–249.
Floquet, N.; Yilmaz, S.; Falconer, J. L. Interaction of copper catalysts and Si(100) for the direct synthesis of methylchlorosilanes. J. Catal. 1994, 148, 348–368.
Luo, W. X.; Wang, G. R.; Wang, J. F. Effect of CuCl particle size on the reduction reaction by silicon in preparation of contact mass used for methylchlorosilane synthesis. Ind. Eng. Chem. Res. 2006, 45, 129–133.
Somorjai, G. A.; Park, J. Y. Molecular factors of catalytic selectivity. Angew. Chem., Int. Ed. 2008, 47, 9212–228.
Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555–558.
Kwak, J. H.; Hu, J. Z.; Mei, D. H.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.
Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.
Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface- confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.
Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.
Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y. E.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater. 2016, 28, 2540–2546.