AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Methylammonium cation deficient surface for enhanced binding stability at TiO2/CH3NH3PbI3 interface

Xin Xu1Kai Li2Zhenzhong Yang1Jiangjian Shi1Dongmei Li1Lin Gu1( )Zhijian Wu2( )Qingbo Meng1( )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Show Author Information

Graphical Abstract

Abstract

Heterojunction interfaces in perovskite solar cells play an important role in enhancing their photoelectric properties and stability. Till date, the precise lattice arrangement at TiO2/CH3NH3PbI3 heterojunction interfaces has not been investigated clearly. Here, we examined a TiO2/CH3NH3PbI3 interface and found that a heavy atomic layer exists in such interfaces, which is attributed to the vacancies of methylammonium (MA) cation groups. Further, first-principles calculation results suggested that an MA cation-deficient surface structure is beneficial for a strong heterogeneous binding between TiO2 and CH3NH3PbI3 to enhance the interface stability. Our research is helpful for further understanding the detailed interface atom arrangements and provides references for interfacial modification in perovskite solar cells.

Electronic Supplementary Material

Download File(s)
nr-10-2-483_ESM.pdf (854.6 KB)

References

1

Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology: The case for thin-film solar cells. Science 1999, 285, 692-698.

2

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050- 6051.

3

Kim, H. -S.; Lee, C. -R.; Im, J. -H.; Lee, K. -B.; Moehl, T.; Marchioro, A.; Moon, S. -J.; Humphry-Baker, R.; Yum, J. -H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

4

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-647.

5

Burschka, J.; Pellet, N.; Moon, S. -J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-319.

6

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.

7

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897-903.

8

Zhang, H. Y.; Shi, J. J.; Dong, J.; Xu, X.; Luo, Y. H.; Li, D. M.; Meng, Q. B. A repeated interdiffusion method for efficient planar formamidinium perovskite solar cells. J. Energy Chem. 2015, 24, 707-711.

9

Huang, F. Z.; Dkhissi, Y.; Huang, W. C.; Xiao, M. D.; Benesperi, I.; Rubanov, S.; Zhu, Y.; Lin, X. F.; Jiang, L. C.; Zhou, Y. C. et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 2014, 10, 10-18.

10

Zhu, L. F.; Shi, J. J.; Li, D. M.; Meng, Q. B. Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells. Acta Chim. Sin. 2015, 73, 261-266.

11

Wang, J. T. -W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J. et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014, 14, 724-730.

12

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. -B.; Duan, H. -S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.

13

Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J. -P. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2016, 2, e1501170.

14

Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623-3630.

15

Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 2448-2463.

16

Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Van De Krol, R.; Moehl, T.; Grätzel, M.; Moser, J. -E. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics 2014, 8, 250-255.

17

Gonzalez-Pedro, V.; Juarez-Perez, E. J.; Arsyad, W. -S.; Barea, E. M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 2014, 14, 888-893.

18

Schulz, P.; Edri, E.; Kirmayer, S.; Hodes, G.; Cahen, D.; Kahn, A. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 2014, 7, 1377-1381.

19

Shi, J. J.; Xu, X.; Zhang, H. Y.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport. Appl. Phys. Lett. 2015, 107, 163901.

20

Roiati, V.; Mosconi, E.; Listorti, A.; Colella, S.; Gigli, G.; De Angelis, F. Stark effect in perovskite/TiO2 solar cells: Evidence of local interfacial order. Nano Lett. 2014, 14, 2168-2174.

21

Long, R.; Prezhdo, O. V. Dopants control electron-hole recombination at perovskite-TiO2 interfaces: Ab initio time-domain study. ACS Nano 2015, 9, 11143-11155.

22

Mosconi, E.; Ronca, E.; De Angelis, F. First-principles investigation of the TiO2/organohalide perovskites interface: The role of interfacial chlorine. J. Phys. Chem. Lett. 2014, 5, 2619-2625.

23

Yuan, Y. B.; Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286-293.

24

Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 2015, 8, 2118-2127.

25

Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T. -W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511-1515.

26

Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 2016, 7, 10228.

27

Niu, G. D.; Li, W. Z.; Meng, F. Q.; Wang, L. D.; Dong, H. P.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705-710.

28

Lu, X.; Jian, Z. L.; Fang, Z.; Gu, L.; Hu, Y. -S.; Chen, W.; Wang, Z. X.; Chen, L. Q. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ. Sci. 2011, 4, 2638-2644.

29

Kübel, C.; Voigt, A.; Schoenmakers, R.; Otten, M.; Su, D.; Lee, T. -C.; Carlsson, A.; Bradley, J. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 2005, 11, 378-400.

30

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-641.

31

Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628-5641.

32

Mosconi, E.; Ronca, E.; De Angelis, F. First-principles investigation of the TiO2/organohalide perovskites interface: The role of interfacial chlorine. J. Phys. Chem. Lett. 2014, 5, 2619-2625.

33

Kim, H. -S.; Park, N. -G. Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: Effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 2014, 5, 2927-2934.

34

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

35

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.

36

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

37

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

38

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

Nano Research
Pages 483-490
Cite this article:
Xu X, Li K, Yang Z, et al. Methylammonium cation deficient surface for enhanced binding stability at TiO2/CH3NH3PbI3 interface. Nano Research, 2017, 10(2): 483-490. https://doi.org/10.1007/s12274-016-1307-3

772

Views

8

Crossref

N/A

Web of Science

8

Scopus

2

CSCD

Altmetrics

Received: 27 June 2016
Revised: 27 September 2016
Accepted: 04 October 2016
Published: 12 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return