Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rashba spin splitting (RSS) in quantum-spin Hall (QSH) insulators is of special importance for fabricating spintronic devices. By changing the stacking order, a unique bilayered fluorinated arsenene (AsF) system is demonstrated to simultaneously possess RSS and non-trivial topological electronic states. We show by first-principle calculations that tunable RSS can be realized in bilayered AsF. Intrinsic RSS of 25 meV is obtained in the AA-stacked AsF bilayer by considering the spin-orbit coupling effect. The RSS can be tuned in the range of 0 to 50 meV by applying biaxial strains and can be significantly enhanced up to 186 meV in the presence of an external electric field. The AB-stacked AsF bilayer is shown to be a two-dimensional topological insulator with a sizable bulk bandgap of 140 meV (up to 240 meV), which originates from the spin-orbit coupling within the px, y–pz band inversion. Surprisingly, RSS up to 295 meV can be induced in the AB-stacked AsF bilayer by applying an external electric field, while the robust topology property without RSS can be retained under the applied strains. The AsF bilayers with tunable RSS and a nontrivial bandgap with AA- and AB-stacking orders can pave the way for designing spin field-effect transistors and new QSH devices.
Datta, S.; Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 1990, 56, 665-667.
Gambardella, P.; Miron, I. M. Current-induced spin-orbit torques. Phil. Trans. Roy. Soc. A 2011, 369, 3175-3197.
Rashba, E. I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 1960, 2, 1109-1122.
Bychkov, Y. A.; Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 1984, 17, 6039-6045.
Awschalom, D.; Samarth, N. Trend: Spintronics without magnetism. Physics 2009, 2, 50.
Bychkov, Y. A.; Rashba, É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78-81.
Nitta, J.; Akazaki, T.; Takayanagi, H.; Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/ In0.52Al0.48As heterostructure. Phys. Rev. Lett. 1997, 78, 1335-1338.
Tahan, C.; Joynt, R. Rashba spin-orbit coupling and spin relaxation in silicon quantum wells. Phys. Rev. B 2005, 71, 075315.
LaShell, S.; McDougall, B. A.; Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 1996, 77, 3419-3422.
Popović, D.; Reinert, F.; Hüfner, S.; Grigoryan, V. G.; Springborg, M.; Cercellier, H.; Fagot-Revurat, Y.; Kierren, B.; Malterre, D. High-resolution photoemission on Ag/Au (111): Spin-orbit splitting and electronic localization of the surface state. Phys. Rev. B 2005, 72, 045419.
Varykhalov, A.; Marchenko, D.; Scholz, M. R.; Rienks, E. D. L.; Kim, T. K.; Bihlmayer, G.; Sánchez-Barriga, J.; Rader, O. Ir(111) surface state with giant Rashba splitting persists under graphene in air. Phys. Rev. Lett. 2012, 108, 066804.
Koroteev, Y. M.; Bihlmayer, G.; Gayone, J. E.; Chulkov, E. V.; Blügel, S.; Echenique, P. M.; Hofmann, P. Strong spin-orbit splitting on Bi surfaces. Phys. Rev. Lett. 2004, 93, 046403.
Sugawara, K.; Sato, T.; Souma, S.; Takahashi, T.; Arai, M.; Sasaki, T. Fermi surface and anisotropic spin-orbit coupling of Sb (111) studied by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2006, 96, 046411.
Ast, C. R.; Henk, J.; Ernst, A.; Moreschini, L.; Falub, M. C.; Pacilé, D.; Bruno, P.; Kern, K.; Grioni, M. Giant spin splitting through surface alloying. Phys. Rev. Lett. 2007, 98, 186807.
Gierz, I.; Suzuki, T.; Frantzeskakis, E.; Pons, S.; Ostanin, S.; Ernst, A.; Henk, J.; Grioni, M.; Kern, K.; Ast, C. R. Silicon surface with giant spin splitting. Phys. Rev. Lett. 2009, 103, 046803.
Mathias, S.; Ruffing, A.; Deicke, F.; Wiesenmayer, M.; Sakar, I.; Bihlmayer, G.; Chulkov, E. V.; Koroteev, Y. M.; Echenique, P. M.; Bauer, M. et al. Quantum-well-induced giant spin-orbit splitting. Phys. Rev. Lett. 2010, 104, 066802.
Park, J.; Jung, S. W.; Jung, M. C.; Yamane, H.; Kosugi, N.; Yeom, H. W. Self-assembled nanowires with giant Rashba split bands. Phys. Rev. Lett. 2013, 110, 036801.
Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Rashba effect in the graphene/Ni (111) system. Phys. Rev. Lett. 2008, 100, 107602.
Ishizaka, K.; Bahramy, M. S.; Murakawa, H.; Sakano, M.; Shimojima, T.; Sonobe, T.; Koizumi, K.; Shin, S.; Miyahara, H.; Kimura, A. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 2011, 10, 521-526.
King, P. D. C.; Hatch, R. C.; Bianchi, M.; Ovsyannikov, R.; Lupulescu, C.; Landolt, G.; Slomski, B.; Dil, J. H.; Guan, D.; Mi, J. L. et al. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. Phys. Rev. Lett. 2011, 107, 096802.
Zhu, Z. H.; Levy, G.; Ludbrook, B.; Veenstra, C. N.; Rosen, J. A.; Comin, R.; Wong, D.; Dosanjh, P.; Ubaldini, A.; Syers, P. et al. Rashba spin-splitting control at the surface of the topological insulator Bi2Se3. Phys. Rev. Lett. 2011, 107, 186405.
Wang, E. Y.; Tang, P. Z.; Wan, G. L.; Fedorov, A. V.; Miotkowski, I.; Chen, Y. P.; Duan, W. H.; Zhou, S. Y. Robust gapless surface state and Rashba-splitting bands upon surface deposition of magnetic Cr on Bi2Se3. Nano Lett. 2015, 15, 2031-2036.
Di Sante, D.; Barone, P.; Bertacco, R.; Picozzi, S. Electric control of the giant Rashba effect in Bulk GeTe. Adv. Mater. 2013, 25, 509-513.
Zhuang, H. L.; Cooper, V. R.; Xu, H. X.; Ganesh, P.; Hennig, R. G.; Kent, P. R. C. Rashba effect in single-layer antimony telluroiodide SbTeI. Phys. Rev. B 2015, 92, 115302.
Kepenekian, M.; Robles, R.; Katan, C.; Sapori, D.; Pedesseau, L.; Even, J. Rashba and Dresselhaus effects in hybrid organic-inorganic perovskites: From basics to devices. ACS Nano 2015, 9, 11557-11567.
Ming, W. M.; Wang, Z. F.; Zhou, M.; Yoon, M.; Liu, F. Formation of ideal Rashba states on layered semiconductor surfaces steered by strain engineering. Nano Lett. 2016, 16, 404-409.
Liu, Q. H.; Zhang, X. W.; Abdalla, L. B.; Zunger, A. Transforming common Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor compounds into topological heterostructures: The case of CdTe/InSb superlattices. Adv. Funct. Mater. 2016, 26, 3259-3267.
Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112-3115.
Kamal, C.; Ezawa, M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenene systems. Phys. Rev. B 2015, 91, 085423.
Kou, L. Z.; Ma, Y. D.; Tan, X.; Frauenheim, T.; Du, A. J.; Smith, S. Structural and electronic properties of layered arsenic and antimony arsenide. J. Phys. Chem. C 2015, 119, 6918-6922.
Zhang, S. L.; Hu, Y. H.; Hu, Z. Y.; Cai, B.; Zeng, H. B. Hydrogenated arsenenes as planar magnet and Dirac material. Appl. Phys. Lett. 2015, 107, 022102.
Cao, H. W.; Yu, Z. Y.; Lu, P. F. Electronic properties of monolayer and bilayer arsenene under in-plain biaxial strains. Superlatt. Microst. 2015, 86, 501-507.
Zhang, Z. Z.; Xie, J. F.; Yang, D. Z.; Wang, Y. H.; Si, M. S.; Xue, D. S. Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene. Appl. Phys. Express 2015, 8, 055201.
Tang, W. C.; Sun, M. L.; Ren, Q. Q.; Wang, S.; Yu, J. Halogenated arsenenes as Dirac materials. Appl. Surf. Sci. 2016, 376, 286-289.
Du, J.; Xia, C. X.; Wang, T. X.; Zhao, X.; Tan, X. M.; Wei, S. Y. First-principles studies on substitutional doping by group Ⅳ and Ⅵ atoms in the two-dimensional arsenene. Appl. Surf. Sci. 2016, 378, 350-356.
Li, Z. J.; Xu, W.; Yu, Y. Q.; Du, H. Y.; Zhen, K.; Wang, J.; Luo, L. B.; Qiu, H. L.; Yang, X. B. Monolayer hexagonal arsenene with tunable electronic structures and magnetic properties via impurity doping. J. Mater. Chem. C 2016, 4, 362-370.
Zhang, H. J.; Ma, Y. D.; Chen, Z. F. Quantum spin Hall insulators in strain-modified arsenene. Nanoscale 2015, 7, 19152-19159.
Wang, Y. P.; Zhang, C. W.; Ji, W. X.; Zhang, R. W.; Li, P.; Wang, P. J.; Ren, M. J.; Chen, X. L.; Yuan, M. Tunable quantum spin Hall effect via strain in two-dimensional arsenene monolayer. J. Phys. D: Appl. Phys. 2016, 49, 055305.
Wang, Y. P.; Ji, W. X.; Zhang, C. W.; Li, P.; Li, F.; Ren, M. J.; Chen, X. L.; Yuan, M.; Wang, P. J. Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene. Sci. Rep. 2016, 6, 20342.
Song, Z. G.; Liu, C. C.; Yang, J. B.; Han, J. Z.; Ye, M.; Fu, B. T.; Yang, Y. C.; Niu, Q.; Lu, J.; Yao, Y. G. Quantum spin Hall insulators and quantum valley hall insulators of BiX/SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 2014, 6, e147.
Wang, D. C.; Chen, L.; Shi, C. M.; Wang, X. L.; Cui, G. L.; Zhang, P. H.; Chen, Y. Q. Robust large-gap quantum spin Hall insulators in chemically decorated arsenene films. New J. Phys. 2016, 18, 033026.
Zhao, J.; Li, Y. L.; Ma, J. Quantum spin Hall insulators in functionalized arsenene (AsX, X = F, OH and CH3) monolayers with pronounced light absorption. Nanoscale 2016, 8, 9657-9666.
Tsai, H. S.; Wang, S. W.; Hsiao, C. H.; Chen, C. W.; Ouyang, H.; Chueh, Y. L.; Kuo, H. C.; Liang, J. H. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem. Mater. 2016, 28, 425-429.
Kane, C. L.; Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802.
Bahramy, M. S.; Yang, B. J.; Arita, R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.
Liu, Y. P.; Goolaup, S.; Murapaka, C.; Lew, W. S.; Wong, S. K. Effect of magnetic field on the electronic transport in trilayer graphene. ACS Nano 2010, 4, 7087-7092.
Zhu, W. J.; Perebeinos, V.; Freitag, M.; Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 2009, 80, 235402.
Mak, K. F.; Shan, J.; Heinz, T. F. Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 2010, 104, 176404.
Bao, W.; Jing, L.; Velasco, J., Jr.; Lee, Y.; Liu, G.; Tran, D.; Standley, B.; Aykol, M.; Cronin, S. B.; Smirnov, D. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 2011, 7, 948-952.
Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.
Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.
Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515-562.
Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter 2002, 14, 2717-2744.