AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis

Mohammad Kalantari1Meihua Yu1Yannan Yang1Ekaterina Strounina2Zhengying Gu1Xiaodan Huang1Jun Zhang1Hao Song1Chengzhong Yu1( )
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
Center for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
Show Author Information

Graphical Abstract

Abstract

The rational design of nano-carriers is critical for modern enzyme immobilization for advanced biocatalysis. Herein, we report the synthesis of octadecylalkyl- modified mesoporous-silica nanoparticles (C18-MSNs) with a high C18 content (~19 wt.%) and tunable pore sizes (1.6–13 nm). It is demonstrated that the increased hydrophobic content and a tailored pore size (slightly larger than the size of lipase) are responsible for the high performance of immobilized lipase. The optimized C18-MSNs exhibit a loading capacity of 711 mg/g and a specific activity 5.23 times higher than that of the free enzyme. Additionally, 93% of the initial activity is retained after reuse five times, which is better than the best performance reported to date. Our findings pave the way for the robust immobilization of lipase for biocatalytic applications.

Electronic Supplementary Material

Download File(s)
nr-10-2-605_ESM.pdf (2.5 MB)

References

1

Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194.

2

Ansorge-Schumacher, M. B.; Thum, O. Immobilised lipases in the cosmetics industry. Chem. Soc. Rev. 2013, 42, 6475– 6490.

3

Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013, 42, 6406–6436.

4

Torres-Salas, P.; del Monte-Martinez, A.; Cutiño-Avila, B.; Rodriguez-Colinas, B.; Alcalde, M.; Ballesteros, A. O.; Plou, F. J. Immobilized biocatalysts: Novel approaches and tools for binding enzymes to supports. Adv. Mater. 2011, 23, 5275–5282.

5

Jun, S.-H.; Lee, J.; Kim, B. C.; Lee, J. E.; Joo, J.; Park, H.; Lee, J. H.; Lee, S.-M.; Lee, D.; Kim, S. et al. Highly efficient enzyme immobilization and stabilization within meso-structured onion-like silica for biodiesel production. Chem. Mater. 2012, 24, 924–929.

6

Kim, J.; Lee, J.; Na, H. B.; Kim, B. C.; Youn, J. K.; Kwak, J. H.; Moon, K.; Lee, E.; Kim, J.; Park, J. et al. A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small 2005, 1, 1203–1207.

7

Lee, J.; Lee, Y.; Youn, J. K.; Na, H. B.; Yu, T.; Kim, H.; Lee, S.-M.; Koo, Y.-M.; Kwak, J. H.; Park, H. G. et al. Simple Synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 2008, 4, 143–152.

8

Pierre, S. J.; Thies, J. C.; Dureault, A.; Cameron, N. R.; van Hest, J. C. M.; Carette, N.; Michon, T.; Weberskirch, R. Covalent enzyme immobilization onto photopolymerized highly porous monoliths. Adv. Mater. 2006, 18, 1822–1826.

9

Brun, N.; Babeau Garcia, A.; Deleuze, H.; Achard, M. F.; Sanchez, C.; Durand, F.; Oestreicher, V.; Backov, R. Enzyme-based hybrid macroporous foams as highly efficient biocatalysts obtained through integrative chemistry. Chem. Mater. 2010, 22, 4555–4562.

10

Liu, J.; Bai, S. Y.; Jin, Q. R.; Zhong, H.; Li, C.; Yang, Q. H. Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microen­vironment. Langmuir 2012, 28, 9788–9796.

11

Bernal, C.; Illanes, A.; Wilson, L. Heterofunctional hydrophilic–hydrophobic porous silica as support for multipoint covalent immobilization of lipases: Application to lactulose palmitate synthesis. Langmuir 2014, 30, 3557–3566.

12

Mathesh, M.; Luan, B.; Akanbi, T. O.; Weber, J. K.; Liu, J. Q.; Barrow, C. J.; Zhou, R. H.; Yang, W. R. Opening lids: Modulation of lipase immobilization by graphene oxides. ACS Catal. 2016, 6, 4760–4768.

13

Rezaei, A.; Akhavan, O.; Hashemi, E.; Shamsara, M. Ugi four-component assembly process: An efficient approach for one-pot multifunctionalization of nanographene oxide in water and its application in lipase immobilization. Chem. Mater. 2016, 28, 3004–3016.

14

Brady, L.; Brzozowski, A. M.; Derewenda, Z. S.; Dodson, E.; Dodson, G.; Tolley, S.; Turkenburg, J. P.; Christiansen, L.; Huge-Jensen, B.; Norskov, L. et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 1990, 343, 767–770.

15

Brzozowski, A. M.; Derewenda, U.; Derewenda, Z. S.; Dodson, G. G.; Lawson, D. M.; Turkenburg, J. P.; Bjorkling, F.; Huge-Jensen, B.; Patkar, S. A.; Thim, L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 1991, 351, 491–494.

16

Schrag, J. D.; Li, Y. G.; Wu, S.; Cygler, M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 1991, 351, 761–764.

17

Zhang, Y. F.; Ge, J.; Liu, Z. Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. 2015, 5, 4503–4513.

18

Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.

19

Jin, Q. R.; Jia, G. Q.; Zhang, Y. M.; Yang, Q. H.; Li, C. Hydrophobic surface induced activation of pseudomonas cepacia lipase immobilized into mesoporous silica. Langmuir 2011, 27, 12016–12024.

20

Zhou, Z.; Taylor, R. N. K.; Kullmann, S.; Bao, H. X.; Hartmann, M. Mesoporous organosilicas with large cage-like pores for high efficiency immobilization of enzymes. Adv. Mater. 2011, 23, 2627–2632.

21

Stein, A.; Melde, B. J.; Schroden, R. C. Hybrid inorganic– organic mesoporous silicates—nanoscopic reactors coming of age. Adv. Mater. 2000, 12, 1403–1419.

22

Fried, D. I.; Brieler, F. J.; Fröba, M. Designing inorganic porous materials for enzyme adsorption and applications in biocatalysis. ChemCatChem 2013, 5, 862–884.

23

Zhao, J. W.; Gao, F.; Fu, Y. L.; Jin, W.; Yang, P. Y.; Zhao, D. Y. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. Chem. Commun. 2002, 752–753.

24

Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem. Mater. 2000, 12, 3301–3305.

25

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254.

26

Wang, X.; Dou, P. P.; Zhao, P.; Zhao, C. M.; Ding, Y.; Xu, P. Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. ChemSusChem 2009, 2, 947–950.

27

Wang, H. N.; Tang, M.; Han, L.; Cao, J. Y.; Zhang, Z. H.; Huang, W. Q.; Chen, R. Y.; Yu, C. Z. Synthesis of hollow organosiliceous spheres for volatile organic compound removal. J. Mater. Chem. A 2014, 2, 19298–19307.

28

Yang, Y. N.; Bernardi, S.; Song, H.; Zhang, J.; Yu, M. H.; Reid, J. C.; Strounina, E.; Searles, D. J.; Yu, C. Z. Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: Understanding the composition gradient. Chem. Mater. 2016, 28, 704–707.

29

García, N.; Benito, E.; Guzmán, J.; Tiemblo, P. Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces: Preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica. J. Am. Chem. Soc. 2007, 129, 5052–5060.

30

Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Cheng, L.; Feng, D.; Wu, Z. X.; Chen, Z. X.; Wan, Y.; Stein, A. et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic−organic self-assembly. Chem. Mater. 2006, 18, 4447–4464.

31

Yang, Y. N.; Niu, Y. T.; Zhang, J.; Meka, A. K.; Zhang, H. W.; Xu, C.; Lin, C. X. C.; Yu, M. H.; Yu, C. Z. Biphasic synthesis of large-pore and well-dispersed benzene bridged mesoporous organosilica nanoparticles for intracellular protein delivery. Small 2015, 11, 2743–2749.

32

Xu, C.; Yu, M. H.; Noonan, O.; Zhang, J.; Song, H.; Zhang, H. W.; Lei, C.; Niu, Y. T.; Huang, X. D.; Yang, Y. N. et al. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery. Small 2015, 11, 5949–5955.

33

Ren, L. W.; Jia, H. H.; Yu, M.; Shen, W. Z.; Zhou, H.; Wei, P. Enhanced catalytic ability of Candida rugosa lipase immobilized on pore-enlarged hollow silica microspheres and cross-linked by modified dextran in both aqueous and non-aqueous phases. Biotechnol. Bioprocess. Eng. 2013, 18, 888–896.

34

Zhang, J.; Karmakar, S.; Yu, M. H.; Mitter, N.; Zou, J.; Yu, C. Z. Synthesis of silica vesicles with controlled entrance size for high loading, sustained release, and cellular delivery of therapeutical proteins. Small 2014, 10, 5068–5076.

35

Kalantari, M.; Kazemeini, M.; Tabandeh, F.; Arpanaei, A. Lipase immobilisation on magnetic silica nanocomposite particles: Effects of the silica structure on properties of the immobilised enzyme. J. Mater. Chem. 2012, 22, 8385–8393.

36

Haase, N. R.; Shian, S.; Sandhage, K. H.; Kröger, N. Biocatalytic nanoscale coatings through biomimetic layer- by-layer mineralization. Adv. Funct. Mater. 2011, 21, 4243–4251.

37

Kim, M. I.; Ye, Y. J.; Won, B. Y.; Shin, S.; Lee, J.; Park, H. G. A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv. Funct. Mater. 2011, 21, 2868–2875.

38

Bao, S.-J.; Li, C. M.; Zang, J.-F.; Cui, X.-Q.; Qiao, Y.; Guo, J. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater. 2008, 18, 591–599.

39

Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Ishimura, K. Near-infrared fluorescent silica/ porphyrin hybrid nanorings for in vivo cancer imaging. Adv. Funct. Mater. 2012, 22, 3539–3546.

40

Chen, Y.; Xu, P. F.; Chen, H. R.; Li, Y. S.; Bu, W. B.; Shu, Z.; Li, Y. P.; Zhang, J. M.; Zhang, L. X.; Pan, L. M. et al. Colloidal HPMO nanoparticles: Silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications. Adv. Mater. 2013, 25, 3100–3105.

41

Chastek, T. T.; Que, E. L.; Jarzombeck, P.; Macosko, C. W.; Stein, A. Synthesis of lamellar isobutyl silicates and dispersion in polypropylene melts. J. Appl. Polym. Sci. 2007, 105, 1456–1465.

42

Trébosc, J.; Wiench, J. W.; Huh, S.; Lin, V. S. Y.; Pruski, M. Solid-state NMR study of MCM-41-type mesoporous silica nanoparticles. J. Am. Chem. Soc. 2005, 127, 3057–3068.

43

Kobler, J.; Möller, K.; Bein, T. Colloidal suspensions of functionalized mesoporous silica nanoparticles. ACS Nano 2008, 2, 791–799.

44

Salesch, T.; Bachmann, S.; Brugger, S.; Rabelo-Schaefer, R.; Albert, K.; Steinbrecher, S.; Plies, E.; Mehdi, A.; Reyé, C.; Corriu, R. J. P. et al. New inorganic–organic hybrid materials for HPLC separation obtained by direct synthesis in the presence of a surfactant. Adv. Funct. Mater. 2002, 12, 134–142.

Nano Research
Pages 605-617
Cite this article:
Kalantari M, Yu M, Yang Y, et al. Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Research, 2017, 10(2): 605-617. https://doi.org/10.1007/s12274-016-1320-6

671

Views

67

Crossref

N/A

Web of Science

66

Scopus

4

CSCD

Altmetrics

Received: 23 August 2016
Revised: 05 October 2016
Accepted: 08 October 2016
Published: 10 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return