Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Efficient oxygen electrocatalysts are the key elements of numerous energy storage and conversion devices, including fuel cells and metal–air batteries. In order to realize their practical applications, highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts are urgently required. Herein, we report a novel iron-chelated urea-formaldehyde resin hydrogel for the synthesis of Fe-N-C electrocatalysts. This novel hydrogel is prepared using a new instantaneous (20 s) one-step scalable strategy, which theoretically ensures the atomic-level dispersion of Fe ions in the urea-formaldehyde resin, guaranteeing the microstructural homogeneity of the electrocatalyst. Consequently, the prepared electrocatalyst exhibits higher catalytic activity and durability in the oxygen reduction (ORR) and evolution (OER) reactions than the commercial Pt/C catalyst. Furthermore, the above catalyst also shows a much better performance in rechargeable Zn–air batteries, including higher power density and better cycling stability. The developed synthetic approach opens up new avenues toward the development of sustainable active electrocatalysts for electrochemical energy devices.
Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.
Wang, J.; Li, K.; Zhong, H. X.; Xu, D.; Wang, Z. L.; Jiang, Z.; Wu, Z. J.; Zhang, X. B. Synergistic effect between metal- nitrogen-carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew. Chem., Int. Ed. 2015, 54, 10530–10534.
Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.
Li, Y. G.; Dai, H. J. Recent advances in zinc–air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.
Zhang, T.; Zhou, H. S. A reversible long-life lithium-air battery in ambient air. Nat. Commun. 2013, 4, 1817.
He, W. H.; Jiang, C. H.; Wang, J. B.; Lu, L. H. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem., Int. Ed. 2014, 53, 9503–9507.
Cheon, J. Y.; Kim, J. H.; Kim, J. H.; Goddeti, K. C.; Park, J. Y.; Joo, S. H. Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. J. Am. Chem. Soc. 2014, 136, 8875–8878.
Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.
Fominykh, K.; Feckl, J. M.; Sicklinger, J.; Döblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathousky, J.; Scheidt, E. W.; Bein, T. et al. Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 2014, 24, 3123–3129.
Kramm, U. I.; Lefevre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J. P. Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J. Am. Chem. Soc. 2014, 136, 978–985.
Chang, S. T.; Wang, C. H.; Du, H. Y.; Hsu, H. C.; Kang, C. M.; Chen, C. C.; Wu, J. C. S.; Yen, S. C.; Huang, W. F.; Chen, L. C. et al. Vitalizing fuel cells with vitamins: Pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy Environ. Sci. 2012, 5, 5305–5314.
Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.
Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.
Takeguchi, T.; Yamanaka, T.; Takahashi, H.; Watanabe, H.; Kuroki, T.; Nakanishi, H.; Orikasa, Y.; Uchimoto, Y.; Takano, H.; Ohguri, N. et al. Layered perovskite oxide: A reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries. J. Am. Chem. Soc. 2013, 135, 11125–11130.
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.
Li, Q.; Cao, R. G.; Cho, J.; Wu, G. Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage. Adv. Energy Mater. 2014, 4, 1301415.
Liu, Q.; Wang, Y. B.; Dai, L. M.; Yao, J. N. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 2016, 28, 3000–3006.
Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.
Li, G.; Wang, X. L.; Fu, J.; Li, J. D.; Park, M. G.; Zhang, Y. N.; Lui, G.; Chen, Z. W. Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal–air batteries. Angew. Chem., Int. Ed. 2016, 55, 4977–4982.
Liu, Q.; Jin, J. T.; Zhang, J. Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002–5008.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.
Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal- free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.
Tian, G. L.; Zhao, M. Q.; Yu, D. S.; Kong, X. Y.; Huang, J. Q.; Zhang, Q.; Wei, F. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 2014, 10, 2251–2259.
Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.
Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 2013, 42, 4098–4140.
Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline- derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 2013, 135, 7823–7826.
Sevilla, M.; Valle-Vigón, P.; Fuertes, A. B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787.
Roberts, A. D.; Li, X.; Zhang, H. F. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 2014, 43, 4341–4356.
Tian, J.; Morozan, A.; Sougrati, M. T.; Lefèvre, M.; Chenitz, R.; Dodelet, J. P.; Jones, D.; Jaouen, F. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem., Int. Ed. 2013, 52, 6867–6870.
Zhao, D.; Shui, J. L.; Chen, C.; Chen, X. Q.; Reprogle, B. M.; Wang, D. P.; Liu, D. J. Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chem. Sci. 2012, 3, 3200–3205.
Zhao, Y.; Watanabe, K.; Hashimoto, K. Efficient oxygen reduction by a Fe/Co/C/N nano-porous catalyst in neutral media. J. Mater. Chem. A 2013, 1, 1450–1456.
Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High- performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.
Zhao, Y.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Efficient bifunctional Fe/C/N electrocatalysts for oxygen reduction and evolution reaction. J. Phys. Chem. C 2015, 119, 2583–2588.
Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 2013, 230, 50–58.
Liu, Z.; Du, Z. Y.; Song, H.; Wang, C. Y.; Subhan, F.; Xing, W.; Yan, Z. F. The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption. J. Colloid Interface Sci. 2014, 416, 124–132.
Su, D. S.; Sun, G. Q. Nonprecious-metal catalysts for low-cost fuel cells. Angew. Chem., Int. Ed. 2011, 50, 11570–11572.
Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.
Cao, R. G.; Lee, J. S.; Liu, M. L.; Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2012, 2, 816–829.
Nishat, N.; Ahmad, S.; Ahamad, R. T. Synthesis and characterization of antibacterial polychelates of urea– formaldehyde resin with Cr(Ⅲ), Mn(Ⅱ), Fe(Ⅲ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) metal ions. J. Appl. Polym. Sci. 2006, 100, 928–936.
Wei, Z. J.; He, J.; Liang, T.; Oh, H.; Athas, J.; Tong, Z.; Wang, C. Y.; Nie, Z. H. Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym. Chem. 2013, 4, 4601–4605.
Pratt, T. J.; Johns, W. E.; Rammon, R. M.; Plagemann, W. L. A novel concept on the structure of cured urea- formaldehyde resin. J. Adhesion 1985, 17, 275–295.
Liu, J.; Sun, X. J.; Song, P.; Zhang, Y. W.; Xing, W.; Xu, W. L. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron. Adv. Mater. 2013, 25, 6879–6883.
Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079.
Wu, J.; Li, W. M.; Higgins, D.; Chen, Z. W. Heat-treated nonprecious catalyst using Fe and nitrogen-rich 2, 3, 7, 8- tetra(pyridin-2-yl)pyrazino[2, 3-g]quinoxaline coordinated complex for oxygen reduction reaction in PEM fuel cells. J. Phys. Chem. C 2011, 115, 18856–18862.
Wang, L.; Yin, J.; Zhao, L.; Tian, C. G.; Yu, P.; Wang, J. Q.; Fu, H. G. Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem. Commun. 2013, 49, 3022– 3024.
Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130.