AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight

Hamza Kahri1,2Melike Sevim1Önder Metin1,3( )
Department of Chemistry Faculty of Science Atatürk University Erzurum 25240 Turkey
Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56) Faculté des Sciences de Monastir, Université de Monastir, Bd. de l'Environnement Monastir 5019 Tunisia
East Anatolian High Technology Research and Application Center (DAYTAM) Atatürk University Erzurum 25240 Turkey
Show Author Information

Graphical Abstract

Abstract

We address the composition-controlled synthesis of monodispersed AgPd alloy nanoparticles (NPs), their assembly for the first time on mesoporous graphitic carbon nitride (mpg-C3N4), and the unprecedented catalysis of mpg-C3N4@AgPd in the hydrolytic dehydrogenation of ammonia borane (AB) at room temperature. Monodispersed AgPd alloy NPs were synthesized using a high-temperature organic-phase surfactant-assisted protocol comprising the co-reduction of silver(Ⅰ) acetate and palladium(Ⅱ) acetylacetonate in the presence of oleylamine, oleic acid, and 1-octadecene. This protocol allowed the synthesis of four different compositions of AgPd alloy NPs. The AgPd alloy NPs were then assembled on mpg-C3N4, reduced graphene oxide, and Ketjenblack using a liquid-phase self-assembly method. Among the three supports tested, the mpg-C3N4@AgPd catalysts provided the best activity because of the Mott–Schottky effect, which was driven by the favorable work function difference between mpg-C3N4 and the metal NPs. Moreover, the activity of the mpg-C3N4@AgPd catalyst was further enhanced by an acetic acid treatment (AAt), and a record initial turnover frequency of 94.1 mol(hydrogen)·mol(catalyst)−1·min−1 was obtained. Furthermore, the mpg-C3N4@Ag42Pd58-AAt catalyst also showed moderate durability for the hydrolysis of AB. This study also includes a wealth of kinetic data for the mpg-C3N4@AgPd-catalyzed hydrolysis of AB.

References

1
European Commission Decision C. Horizon 2020—Work Programme 2016–2017, Secure, Clean and Efficient Energy [Online]. 2016. http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-energy_en.pdf (accessed Aug 8, 2016).
2

Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O. Hydrogen: The future energy carrier. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 3329–3342.

3

Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sust. Energ. Rev. 2012, 16, 3024–3033.

4

Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem., Int. Ed. 2009, 48, 6608–6630.

5

Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

6

Jiang, H.-L.; Singh, S. K.; Yan, J.-M.; Zhang, X.-B.; Xu, Q. Liquid-phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions. ChemSusChem 2010, 3, 541–549.

7

Demirci, U. B.; Miele, P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ. Sci. 2009, 2, 627–637.

8

Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrogen Energ. 2009, 34, 2303–2311.

9

Singh, A. K.; Singh, S.; Kumar, A. Hydrogen energy future with formic acid: A renewable chemical hydrogen storage system. Catal. Sci. Technol. 2016, 6, 12–40.

10

Singh, S. K.; Xu, Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen Storage. J. Am. Chem. Soc. 2009, 131, 18032–18033.

11

Peng, B.; Chen, J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ. Sci. 2008, 1, 479–483.

12

Zhu, Q. L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2015, 8, 478–512.

13

Gutowska, A.; Li, L. Y.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W. et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem., Int. Ed. 2005, 44, 3578–3582.

14

Sanyal, U.; Demirci, U. B.; Jadirgar, B. R.; Miele, P. Hydrolysis of ammonia borane as a hydrogen source: Fundamental issues and potential solutions towards implementation. ChemSusChem 2011, 4, 1731–1739.

15

Staubitz, A.; Robertson, A. P. M.; Manners, I. Ammonia- borane and related compounds as dihydrogen sources. Chem. Rev. 2010, 110, 4079–4124.

16

Graham, T. W.; Tsang, C. W.; Chen, X. H.; Guo, R. W.; Jia, W. L.; Liu, S. M.; Sui-Seng, C.; Ewart, C. B.; Lough, A.; Amoroso, D. et al. Catalytic solvolysis of ammonia borane. Angew. Chem., Int. Ed. 2010, 49, 8708–8711.

17

Xu, Q.; Chandra, M. A portable hydrogen generation system: Catalytic hydrolysis of ammonia-borane. J. Alloys Compd. 2007, 446, 729–732.

18

Jiang, H.-L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today. 2011, 170, 56–63.

19

Zahmakiran, M.; Özkar, S. Transition metal nanoparticles in catalysis for the hydrogen generation from the hydrolysis of ammonia-borane. Top. Catal. 2013, 56, 1171–1183.

20
Lu, Z. H.; Yao, Q. L.; Zhang, Z. J.; Yang, Y. W.; Chen, X. S. Nanocatalysts for hydrogen generation from ammonia borane and hydrazine borane. J. Nanomat. 2014, 2014, Article ID 729029.https://doi.org/10.1155/2014/729029
21

Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.

22

Singh, A. K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 2013, 5, 652–676.

23

Sun, D. H.; Mazumder, V.; Metin, Ö.; Sun, S. H. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano 2011, 5, 6458–6464.

24

Çiftci, N. S.; Metin, Ö. Monodisperse nickel–palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energ. 2014, 39, 18863–18870.

25

Güngörmez, K.; Metin, Ö. Composition-controlled catalysis of reduced graphene oxide supported CuPd alloy nanoparticles in the hydrolytic dehydrogenation of ammonia borane. Appl. Catal. A 2015, 494, 22–28.

26

Zhang, S.; Metin, Ö.; Sun, D.; Sun, S. H. Monodisperse AgPd alloy nanoparticles and their superior catalysis in the formic acid dehydrogenation. Angew. Chem., Int. Ed. 2013, 52, 3681–3684.

27

Metin, Ö.; Sun, X. L.; Sun, S. H. Monodisperse gold- palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 2013, 5, 910–912.

28

Shang, N. Z.; Feng, C.; Gao, S. T.; Wang, C. Ag/Pd nanoparticles supported on amine-functionalized metal-organic framework for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energ. 2016, 41, 944–950.

29

Tong, Y.; Lu, X. F.; Sun, W. N.; Nie, G. D.; Yang, L.; Wang, C. Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane. J. Power Sources 2014, 261, 221–226.

30

Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362–2365.

31

Cuenya, B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 2010, 518, 3127–3150.

32

Diyarbakir, S.; Can, H. S.; Metin, Ö. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces 2015, 7, 3199–3206.

33

Metin, Ö.; Ho, S. F.; Alp, C.; Can, H. S.; Mankin, M. N.; Gültekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki–Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.

34

Fan, Y. R.; Li, X. J.; He, X. C.; Zeng, C. M.; Fan, G. Y.; Liu, Q. Q.; Tang, D. M. Effective hydrolysis of ammonia borane catalyzed by ruthenium nanoparticles immobilized on graphic carbon nitride. Int. J. Hydrogen Energ. 2014, 39, 19982–19989.

35

Li, X. H.; Wang, X. C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170–2174.

36

Guo, L. T.; Cai, Y. Y.; Ge, J. M.; Zhang, Y. N.; Gong, L. H.; Li, X. H.; Wang, K. X.; Ren, Q. Z.; Su, J.; Chen, J. S. Multifunctional Au-Co@CN nanocatalyst for highly efficient hydrolysis of ammonia borane. ACS Catal. 2015, 5, 388–392.

37

Cai, Y. Y.; Li, X.-H.; Zhang, Y.-N.; Wei, Z.; Wang, K.-X.; Chen, J.-S. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott–Schottky photocatalyst. Angew. Chem., Int. Ed. 2013, 52, 11822–11825.

38

Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew. Chem., Int. Ed. 2006, 45, 4467–4471.

39

Zheng, Y.; Liu, J.; Liang, J.; Joroniec, M.; Qiao, S. Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731.

40

Di, Y.; Wang, X. C.; Thomas, A.; Antonietti, M. Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light. ChemCatChem 2010, 2, 834–838.

41

Durap, F.; Metin, Ö. Monodisperse palladium nanoparticles supported on chemically derived graphene: Highly active and reusable nanocatalysts for Suzuki–Miyaura cross-coupling reactions. Turk. J. Chem. 2015, 39, 1247–1256.

42

Şenol, A. M.; Metin, O.; Acar, M.; Onganer, Y.; Meral, K. The interaction of fluorescent pyronin Y molecules with monodisperse silver nanoparticles in chloroform. J. Mol. Struc. 2016, 1103, 212–216.

43

Xu, J.; Wu, H.-T.; Wang, X.; Xue, B.; Li, Y. X.; Cao, Y. A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys. Chem. Chem. Phys. 2013, 15, 4510–4517.

44

Erdogan, D. A.; Sevim, M.; Kısa, E.; Emiroglu, D. B.; Karatok, M.; Vovk, E. I.; Bjerring, M.; Akbey, Ü.; Metin, Ö.; Özensoy, E. Photocatalytic activity of mesoporous graphitic carbon nitride (mpg-C3N4) towards organic chromophores under UV and VIS light illumination. Top. Catal. 2016, 59, 1305–1318.

45

Metin, Ö.; Aydoğan, Ş.; Meral, K. A new route for the synthesis of graphene oxide-Fe3O4 nanocomposites and their schottky diode applications. J. Alloys Compd. 2014, 585, 681–688.

46

Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.

47

Metin, Ö.; Dinç, M.; Eren, Z. S.; Özkar, S. Silica embedded cobalt(0) nanoclusters: Efficient, stable and cost effective catalyst for hydrogen generation from the hydrolysis of ammonia borane. Int. J. Hydrogen Energ. 2011, 36, 11528– 11535.

48

Li, H.-J.; Sun, B.-W.; Sui, L.; Qian, D. J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys. 2015, 17, 3309–3315.

49
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics: Eden Prairie, Minnesota, USA, 1992.
50

Steiner, P.; Hüfner, S. Thermochemical analysis of PdxAg1–x alloys from XPS core-level binding energy shifts. Solid State Commun. 1981, 37, 79–81.

51

Li, H.-X.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott– Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.

52

Rikken, G. L. J. A.; Braun, D.; Staring, E. G. J.; Demandt, R. Schottky effect at a metal‐polymer interface. Appl. Phys. Lett. 1994, 65, 219–221.

53

Zhan, W.-W.; Zhu, Q.-L.; Xu, Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal. 2016, 6, 6892–6905.

Nano Research
Pages 1627-1640
Cite this article:
Kahri H, Sevim M, Metin Ö. Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Research, 2017, 10(5): 1627-1640. https://doi.org/10.1007/s12274-016-1345-x
Part of a topical collection:

880

Views

80

Crossref

N/A

Web of Science

81

Scopus

0

CSCD

Altmetrics

Received: 08 August 2016
Revised: 19 October 2016
Accepted: 21 October 2016
Published: 23 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return