Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We address the composition-controlled synthesis of monodispersed AgPd alloy nanoparticles (NPs), their assembly for the first time on mesoporous graphitic carbon nitride (mpg-C3N4), and the unprecedented catalysis of mpg-C3N4@AgPd in the hydrolytic dehydrogenation of ammonia borane (AB) at room temperature. Monodispersed AgPd alloy NPs were synthesized using a high-temperature organic-phase surfactant-assisted protocol comprising the co-reduction of silver(Ⅰ) acetate and palladium(Ⅱ) acetylacetonate in the presence of oleylamine, oleic acid, and 1-octadecene. This protocol allowed the synthesis of four different compositions of AgPd alloy NPs. The AgPd alloy NPs were then assembled on mpg-C3N4, reduced graphene oxide, and Ketjenblack using a liquid-phase self-assembly method. Among the three supports tested, the mpg-C3N4@AgPd catalysts provided the best activity because of the Mott–Schottky effect, which was driven by the favorable work function difference between mpg-C3N4 and the metal NPs. Moreover, the activity of the mpg-C3N4@AgPd catalyst was further enhanced by an acetic acid treatment (AAt), and a record initial turnover frequency of 94.1 mol(hydrogen)·mol(catalyst)−1·min−1 was obtained. Furthermore, the mpg-C3N4@Ag42Pd58-AAt catalyst also showed moderate durability for the hydrolysis of AB. This study also includes a wealth of kinetic data for the mpg-C3N4@AgPd-catalyzed hydrolysis of AB.
Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O. Hydrogen: The future energy carrier. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 3329–3342.
Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sust. Energ. Rev. 2012, 16, 3024–3033.
Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem., Int. Ed. 2009, 48, 6608–6630.
Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.
Jiang, H.-L.; Singh, S. K.; Yan, J.-M.; Zhang, X.-B.; Xu, Q. Liquid-phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions. ChemSusChem 2010, 3, 541–549.
Demirci, U. B.; Miele, P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ. Sci. 2009, 2, 627–637.
Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrogen Energ. 2009, 34, 2303–2311.
Singh, A. K.; Singh, S.; Kumar, A. Hydrogen energy future with formic acid: A renewable chemical hydrogen storage system. Catal. Sci. Technol. 2016, 6, 12–40.
Singh, S. K.; Xu, Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen Storage. J. Am. Chem. Soc. 2009, 131, 18032–18033.
Peng, B.; Chen, J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ. Sci. 2008, 1, 479–483.
Zhu, Q. L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2015, 8, 478–512.
Gutowska, A.; Li, L. Y.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W. et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem., Int. Ed. 2005, 44, 3578–3582.
Sanyal, U.; Demirci, U. B.; Jadirgar, B. R.; Miele, P. Hydrolysis of ammonia borane as a hydrogen source: Fundamental issues and potential solutions towards implementation. ChemSusChem 2011, 4, 1731–1739.
Staubitz, A.; Robertson, A. P. M.; Manners, I. Ammonia- borane and related compounds as dihydrogen sources. Chem. Rev. 2010, 110, 4079–4124.
Graham, T. W.; Tsang, C. W.; Chen, X. H.; Guo, R. W.; Jia, W. L.; Liu, S. M.; Sui-Seng, C.; Ewart, C. B.; Lough, A.; Amoroso, D. et al. Catalytic solvolysis of ammonia borane. Angew. Chem., Int. Ed. 2010, 49, 8708–8711.
Xu, Q.; Chandra, M. A portable hydrogen generation system: Catalytic hydrolysis of ammonia-borane. J. Alloys Compd. 2007, 446, 729–732.
Jiang, H.-L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today. 2011, 170, 56–63.
Zahmakiran, M.; Özkar, S. Transition metal nanoparticles in catalysis for the hydrogen generation from the hydrolysis of ammonia-borane. Top. Catal. 2013, 56, 1171–1183.
Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.
Singh, A. K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 2013, 5, 652–676.
Sun, D. H.; Mazumder, V.; Metin, Ö.; Sun, S. H. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano 2011, 5, 6458–6464.
Çiftci, N. S.; Metin, Ö. Monodisperse nickel–palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energ. 2014, 39, 18863–18870.
Güngörmez, K.; Metin, Ö. Composition-controlled catalysis of reduced graphene oxide supported CuPd alloy nanoparticles in the hydrolytic dehydrogenation of ammonia borane. Appl. Catal. A 2015, 494, 22–28.
Zhang, S.; Metin, Ö.; Sun, D.; Sun, S. H. Monodisperse AgPd alloy nanoparticles and their superior catalysis in the formic acid dehydrogenation. Angew. Chem., Int. Ed. 2013, 52, 3681–3684.
Metin, Ö.; Sun, X. L.; Sun, S. H. Monodisperse gold- palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 2013, 5, 910–912.
Shang, N. Z.; Feng, C.; Gao, S. T.; Wang, C. Ag/Pd nanoparticles supported on amine-functionalized metal-organic framework for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energ. 2016, 41, 944–950.
Tong, Y.; Lu, X. F.; Sun, W. N.; Nie, G. D.; Yang, L.; Wang, C. Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane. J. Power Sources 2014, 261, 221–226.
Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362–2365.
Cuenya, B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 2010, 518, 3127–3150.
Diyarbakir, S.; Can, H. S.; Metin, Ö. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces 2015, 7, 3199–3206.
Metin, Ö.; Ho, S. F.; Alp, C.; Can, H. S.; Mankin, M. N.; Gültekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki–Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.
Fan, Y. R.; Li, X. J.; He, X. C.; Zeng, C. M.; Fan, G. Y.; Liu, Q. Q.; Tang, D. M. Effective hydrolysis of ammonia borane catalyzed by ruthenium nanoparticles immobilized on graphic carbon nitride. Int. J. Hydrogen Energ. 2014, 39, 19982–19989.
Li, X. H.; Wang, X. C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170–2174.
Guo, L. T.; Cai, Y. Y.; Ge, J. M.; Zhang, Y. N.; Gong, L. H.; Li, X. H.; Wang, K. X.; Ren, Q. Z.; Su, J.; Chen, J. S. Multifunctional Au-Co@CN nanocatalyst for highly efficient hydrolysis of ammonia borane. ACS Catal. 2015, 5, 388–392.
Cai, Y. Y.; Li, X.-H.; Zhang, Y.-N.; Wei, Z.; Wang, K.-X.; Chen, J.-S. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott–Schottky photocatalyst. Angew. Chem., Int. Ed. 2013, 52, 11822–11825.
Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew. Chem., Int. Ed. 2006, 45, 4467–4471.
Zheng, Y.; Liu, J.; Liang, J.; Joroniec, M.; Qiao, S. Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731.
Di, Y.; Wang, X. C.; Thomas, A.; Antonietti, M. Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light. ChemCatChem 2010, 2, 834–838.
Durap, F.; Metin, Ö. Monodisperse palladium nanoparticles supported on chemically derived graphene: Highly active and reusable nanocatalysts for Suzuki–Miyaura cross-coupling reactions. Turk. J. Chem. 2015, 39, 1247–1256.
Şenol, A. M.; Metin, O.; Acar, M.; Onganer, Y.; Meral, K. The interaction of fluorescent pyronin Y molecules with monodisperse silver nanoparticles in chloroform. J. Mol. Struc. 2016, 1103, 212–216.
Xu, J.; Wu, H.-T.; Wang, X.; Xue, B.; Li, Y. X.; Cao, Y. A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys. Chem. Chem. Phys. 2013, 15, 4510–4517.
Erdogan, D. A.; Sevim, M.; Kısa, E.; Emiroglu, D. B.; Karatok, M.; Vovk, E. I.; Bjerring, M.; Akbey, Ü.; Metin, Ö.; Özensoy, E. Photocatalytic activity of mesoporous graphitic carbon nitride (mpg-C3N4) towards organic chromophores under UV and VIS light illumination. Top. Catal. 2016, 59, 1305–1318.
Metin, Ö.; Aydoğan, Ş.; Meral, K. A new route for the synthesis of graphene oxide-Fe3O4 nanocomposites and their schottky diode applications. J. Alloys Compd. 2014, 585, 681–688.
Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.
Metin, Ö.; Dinç, M.; Eren, Z. S.; Özkar, S. Silica embedded cobalt(0) nanoclusters: Efficient, stable and cost effective catalyst for hydrogen generation from the hydrolysis of ammonia borane. Int. J. Hydrogen Energ. 2011, 36, 11528– 11535.
Li, H.-J.; Sun, B.-W.; Sui, L.; Qian, D. J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys. 2015, 17, 3309–3315.
Steiner, P.; Hüfner, S. Thermochemical analysis of PdxAg1–x alloys from XPS core-level binding energy shifts. Solid State Commun. 1981, 37, 79–81.
Li, H.-X.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott– Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.
Rikken, G. L. J. A.; Braun, D.; Staring, E. G. J.; Demandt, R. Schottky effect at a metal‐polymer interface. Appl. Phys. Lett. 1994, 65, 219–221.
Zhan, W.-W.; Zhu, Q.-L.; Xu, Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal. 2016, 6, 6892–6905.