AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries

Jung Sang Cho1,2Jin-Sung Park1Yun Chan Kang1( )
Department of Materials Science and EngineeringKorea University, Anam-Dong, Seongbuk-GuSeoul136-713Republic of Korea
Department of Engineering ChemistryChungbuk National UniversityChungbuk361-763Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Porous FeS nanofibers with numerous nanovoids for use as anode materials for sodium-ion batteries were prepared by electrospinning and subsequent sulfidation. The post-treatment of the as-spun Fe(acac)3-polyacrylonitrile composite nanofibers in an air atmosphere yielded hollow Fe2O3 nanofibers due to Ostwald ripening. The ultrafine Fe2O3 nanocrystals formed at the center of the fiber diffused toward the outside of the fiber via Ostwald ripening. On sulfidation, the Fe2O3 hollow nanofibers were transformed into porous FeS nanofibers, which contained numerous nanovoids. The formation of porosity in the FeS nanofibers was driven by nanoscale Kirkendall diffusion. The porous FeS nanofibers were very structurally stable and had superior sodium-ion storage properties compared with the hollow Fe2O3 nanofibers. The discharge capacities of the porous FeS nanofibers for the 1st and 150th cycles at a current density of 500 mA·g–1 were 561 and 592 mA·h·g–1, respectively. The FeS nanofibers had final discharge capacities of 456, 437, 413, 394, 380, and 353 mA·h·g–1 at current densities of 0.2, 0.5, 1.0, 2.0, 3.0, and 5.0 A·g–1, respectively.

Electronic Supplementary Material

Download File(s)
nr-10-3-897_ESM.pdf (1.9 MB)

References

1

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. -S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

2

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

3

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzá lez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

4

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

5

You, Y.; Wu, X. -L.; Yin, Y. -X.; Guo, Y. -G. High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647.

6

Cho, J. S.; Lee, S. Y.; Kang, Y. C. First introduction of NiSe2 to anode material for sodium-ion batteries: A hybrid of graphene-wrapped NiSe2/C porous nanofiber. Sci. Rep. 2016, 6, 23338.

7

Zhang, Z.; Shi, X. D.; Yang, X.; Fu, Y.; Zhang, K.; Lai, Y. Q.; Li, J. Nanooctahedra particles assembled FeSe2 microspheres embedded into sulfur-doped reduced graphene oxide sheets as a promising anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 13849–13856.

8

Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014, 14, 1865–1869.

9

Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem., Int. Ed. 2013, 52, 1964–1967.

10

You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. -W.; Guo, Y. -G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

11

Cho, J. S.; Won, J. M.; Lee, J. -K.; Kang, Y. C. Design and synthesis of multiroom-structured metal compounds–carbon hybrid microspheres as anode materials for rechargeable batteries. Nano Energy 2016, 26, 466–478.

12

Dong, Y. F.; Li, S.; Zhao, K. N.; Han, C. H.; Chen, W.; Wang, B. L.; Wang, L.; Xu, B. A.; Wei, Q. L.; Zhang, L. et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy Environ. Sci. 2015, 8, 1267–1275.

13

Li, S.; Dong, Y. F.; Xu, L.; Xu, X.; He, L.; Mai, L. Q. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 2014, 26, 3545–3553.

14

Gu, X.; Li, L. J.; Wang, Y.; Dai, P. C.; Wang, H. B.; Zhao, X. B. Hierarchical tubular structures constructed from rutile TiO2 nanorods with superior sodium storage properties. Electrochim. Acta 2016, 211, 77–82.

15

Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531–3538.

16

Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

17

Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 126, 13008–13012.

18

Lacey, S. D.; Wan, J. Y.; Cresce, A. v. W.; Russell, S. M.; Dai, J. Q.; Bao, W. Z.; Xu, K.; Hu, L. B. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett. 2015, 15, 1018–1024.

19

Peng, S. J.; Han, X. P.; Li, L. L.; Zhu, Z. Q.; Cheng, F. Y.; Srinivansan, M.; Adams, S.; Ramakrishna, S. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 2016, 12, 1359–1368.

20

Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

21

Lee, S. Y.; Kang, Y. C. Sodium-ion storage properties of FeS–reduced graphene oxide composite powder with a crumpled structure. Chem. —Eur. J. 2016, 22, 2769–2774.

22

Walter, M.; Zü nd, T.; Kovalenko, M. V. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 2015, 7, 9158–9163.

23

Zhang, S. S. The redox mechanism of FeS2 in non-aqueous electrolytes for lithium and sodium batteries. J. Mater. Chem. A 2015, 3, 7689–7694.

24

Zhu, Y. J.; Suo, L. M.; Gao, T.; Fan, X. L.; Han, F. D.; Wang, C. S. Ether-based electrolyte enabled Na/FeS2 rechargeable batteries. Electrochem. Commun. 2015, 54, 18–22.

25

Dirican, M.; Lu, Y.; Ge, Y. Q.; Yildiz, O.; Zhang, X. W. Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material. ACS Appl. Mater. Interfaces 2015, 7, 18387–18396.

26

Liu, Y. C.; Zhang, N.; Yu, C. M.; Jiao, L. F.; Chen, J. MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 2016, 16, 3321–3328.

27

Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.

28

Wang, X. Y.; Fan, L.; Gong, D. C.; Zhu, J.; Zhang, Q. F.; Lu, B. G. Core–shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 2016, 26, 1104–1111.

29

Xiong, Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Electrospun TiO2/C nanofibers as a high-capacity and cycle-stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 16684–16689.

30

Cho, J. S.; Lee, J. -K.; Kang, Y. C. Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries. Sci. Rep. 2016, 6, 23699.

31

Zhu, Y.; Fan, X.; Suo, L.; Luo, C.; Gao, T.; Wang, C. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 2016, 10, 1529–1538.

32

Wang, M. D.; Xue, D. P.; Qin, H. Y.; Zhang, L.; Ling, G. P.; Liu, J. B.; Fang, Y. T.; Meng, L. Preparation of FeS2 nanotube arrays based on layer-by-layer assembly and their photoelectrochemical properties. Mater. Sci. Eng. B 2016, 204, 38–44.

33

Shao, D. D.; Wang, X. X.; Li, J. X.; Huang, Y. S.; Ren, X. M.; Hou, G. S.; Wang, X. K. Reductive immobilization of uranium by PAAM–FeS/Fe3O4 magnetic composites. Environ. Sci. : Water Res. Technol. 2015, 1, 169–176.

34

Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717.

35

Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Threedimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

36

Kennedy, T.; Sturman, B. T. The oxidation of iron (Ⅱ) sulphide. J. Therm. Anal. 1975, 8, 329–337.

37

Schwab, G. M.; Philinis, J. Reactions of iron pyrite: Its thermal decomposition, reduction by hydrogen and air oxidation. J. Am. Chem. Soc. 1947, 69, 2588–2596.

38

Coombs, P. G.; Munir, Z. A. The mechanism of oxidation of ferrous sulfide (FeS) powders in the range of 648 to 923 K. Metall. Trans. B 1989, 20, 661–670.

39

Wang, Y. -X.; Yang, J. P.; Chou, S. -L.; Liu, H. K.; Zhang, W. -X.; Zhao, D. Y.; Dou, S. X. Uniform yolk–shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 8689.

40

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

41

Cho, J. S.; Won, J. M.; Lee, J. -H.; Kang, Y. C. Synthesis and electrochemical properties of spherical and hollowstructured NiO aggregates created by combining the Kirkendall effect and Ostwald ripening. Nanoscale 2015, 7, 19620–19626.

42

Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444.

43

Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

44

Douglas, A.; Carter, R.; Oakes, L.; Share, K.; Cohn, A. P.; Pint, C. L. Ultrafine iron pyrite (FeS2) nanocrystals improve sodium–sulfur and lithium–sulfur conversion reactions for efficient batteries. ACS Nano 2015, 9, 11156–11165.

45

Bai, J.; Li, X. G.; Liu, G. Z.; Qian, Y. T.; Xiong, S. L. Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv. Funct. Mater. 2014, 24, 3012–3020.

46

Su, L. W.; Zhong, Y. R.; Zhou, Z. Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: A case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres. J. Mater. Chem. A 2013, 1, 15158–15166.

47

Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.

48

Cho, J. S.; Hong, Y. J.; Lee, J. -H.; Kang, Y. C. Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries. Nanoscale 2015, 7, 8361–8367.

49

Cho, J. S.; Kang, Y. C. Nanofibers comprising yolk–shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties. Small 2015, 11, 4673–4681.

50

Ngo, D. T.; Kalubarme, R. S.; Le, H. T. T.; Fisher, J. G.; Park, C. N.; Kim, I. D.; Park, C. J. Carbon-interconnected Ge nanocrystals as an anode with ultra-long-term cyclability for lithium ion batteries. Adv. Funct. Mater. 2014, 24, 5291–5298.

51

Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167–173.

52

Wu, H.; Xu, M.; Wu, H. Y.; Xu, J. J.; Wang, Y. L.; Peng, Z.; Zheng, G. F. Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. J. Mater. Chem. 2012, 22, 19821–19825.

53

Liu, Y. J.; Li, X. H.; Guo, H. J.; Wang, Z. X.; Hu, Q. Y.; Peng, W. J.; Yang, Y. Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature. J. Power Sources 2009, 189, 721–725.

54

Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3–carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 2015, 9, 4026–4035.

55

Wang, Z. Y.; Luan, D. Y.; Madhavi, S.; Hu, Y.; Lou, X. W. D. Assembling carbon-coated a-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 2012, 5, 5252–5256.

56

Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Wang, C. S. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 2013, 3, 128–133.

57

Mussatti, E.; Merlini, C.; Barra, G. M. D. O.; Gü ths, S.; de Oliveira, A. P. N.; Siligardi, C. Evaluation of the properties of iron oxide-filled castor oil polyurethane. Mater. Res. 2013, 16, 65–70.

58

Zeng, S. L.; Wang, H. X.; Dong, C. Synthesis and electrical conductivity of nanocrystalline tetragonal FeS. Chinese Phys. B 2014, 23, 087203.

Nano Research
Pages 897-907
Cite this article:
Cho JS, Park J-S, Kang YC. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Research, 2017, 10(3): 897-907. https://doi.org/10.1007/s12274-016-1346-9
Part of a topical collection:

649

Views

146

Crossref

N/A

Web of Science

149

Scopus

0

CSCD

Altmetrics

Received: 14 August 2016
Revised: 18 October 2016
Accepted: 21 October 2016
Published: 23 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return