AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

John W. F. To1,§Jia Wei Desmond Ng1,2,§Samira Siahrostami1,§Ai Leen Koh3Yangjin Lee4Zhihua Chen1Kara D. Fong1Shucheng Chen1Jiajun He5Won-Gyu Bae1Jennifer Wilcox5Hu Young Jeong6Kwanpyo Kim4Felix Studt7,8,9( )Jens K. Nørskov1,7( )Thomas F. Jaramillo1( )Zhenan Bao1( )
Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
Institute of Chemical and Engineering SciencesAgency for ScienceTechnology and ResearchJurong Island627833Singapore
Stanford Nano Shared FacilitiesStanford UniversityStanfordCA94305USA
Department of PhysicsUlsan National Institute of Science and Technology (UNIST)Ulsan, 689-798Republic of Korea
Department of Chemical and Biological EngineeringColorado School of MinesGoldenCO80401USA
UNIST Central Research Facilities (UCRF)Ulsan National Institute of Science and Technology (UNIST)Ulsan, 689-798Republic of Korea
SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory2575 Sand Hill RoadMenlo ParkCA94025USA
Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz Platz 176344Eggenstein-Leopoldshafen, Germany
Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstr. 1876131Karlsruhe, Germany

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O2-H2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of a regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. This work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.

Electronic Supplementary Material

Download File(s)
nr-10-4-1163_ESM.pdf (3.2 MB)

References

1

Dunn, B.; Kamath, H.; Tarascon, J. -M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

2

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

3

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

4

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

5

Ng, J. W. D.; Gorlin, Y.; Hatsukade, T.; Jaramillo, T. F. A precious-metal-free regenerative fuel cell for storing renewable electricity. Adv. Energy Mater. 2013, 3, 1545–1550.

6

Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947.

7

Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.

8

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

9

Wang, D. -W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

10

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal- free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

11

Zhou, X. J.; Qiao, J. L.; Yang, L.; Zhang, J. J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.

12

Liang, H. -W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

13

Guo, B. D.; Liu, Q.; Chen, E. D.; Zhu, H. W.; Fang, L.; Gong, J. R. Controllable N-doping of graphene. Nano Lett. 2010, 10, 4975–4980.

14

Lin, Y. -C.; Lin, C. -Y.; Chiu, P. -W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110.

15

Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M. -A.; Miyata, S. Interplay between nitrogen dopants and native point defects in graphene. Phys. Rev. B 2012, 85, 165439.

16

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

17

Zhao, Z. H.; Xia, Z. H. Design principles for dual-element- doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal. 2016, 6, 1553–1558.

18

Jin, J. T.; Pan, F. P.; Jiang, L. H.; Fu, X. G.; Liang, A. M.; Wei, Z. Y.; Zhang, J. Y.; Sun, G. Q. Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano 2014, 8, 3313–3321.

19

Ranjbar Sahraie, N.; Paraknowitsch, J. P.; Göbel, C.; Thomas, A.; Strasser, P. Noble-metal-free electrocatalysts with enhanced ORR performance by task-specific functionalization of carbon using ionic liquid precursor systems. J. Am. Chem. Soc. 2014, 136, 14486–14497.

20

Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

21

Yang, H. B.; Miao, J. W.; Hung, S. -F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.

22

Ma, T. Y.; Ran, J. R.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem., Int. Ed. 2015, 54, 4646–4650.

23

Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133–4142.

24

Kim, O. -H.; Cho, Y. -H.; Chung, D. Y.; Kim, M. J.; Yoo, J. M.; Park, J. E.; Choe, H.; Sung, Y. -E. Facile and gram-scale synthesis of metal-free catalysts: Toward realistic applications for fuel cells. Sci. Rep. 2015, 5, 8376.

25

Sevilla, M.; Yu, L. H.; Fellinger, T. P.; Fuertes, A. B.; Titirici, M. -M. Polypyrrole-derived mesoporous nitrogen- doped carbons with intrinsic catalytic activity in the oxygen reduction reaction. RSC Adv. 2013, 3, 9904–9910.

26

To, J. W. F.; He, J. J.; Mei, J. G.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S. C.; Bae, W. -G.; Pan, L. J.; Tok, J. B. -H. et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009.

27

Wan, Y.; Shi, Y. F.; Zhao, D. Y. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 2008, 20, 932–945.

28

Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/ epoxy resin mixtures. J. Am. Chem. Soc. 1998, 120, 8963– 8970.

29

Zhang, C. H.; Fu, L.; Liu, N.; Liu, M. H.; Wang, Y. Y.; Liu, Z. F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020–1024.

30

Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758.

31

Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. 2005, 117, 7215–7221.

32

Zhong, M. J.; Kim, E. K.; McGann, J. P.; Chun, S. -E.; Whitacre, J. F.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. J. Am. Chem. Soc. 2012, 134, 14846–14857.

33

Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653.

34

Byon, H. R.; Suntivich, J.; Shao-Horn, Y. Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 2011, 23, 3421–3428.

35

Zhou, X. J.; Qiao, J. L.; Yang, L.; Zhang, J. J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.

36

Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

37

Serov, A.; Artyushkova, K.; Atanassov, P. Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: Synthesis, structure, and reactivity. Adv. Energy Mater. 2014, 4, 1301735.

38

Couturier, G.; Kirk, D. W.; Hyde, P. J.; Srinivasan, S. Electrocatalysis of the hydrogen oxidation and of the oxygen reduction reactions of Pt and some alloys in alkaline medium. Electrochim. Acta 1987, 32, 995–1005.

39

Hsueh, K. L.; Gonzalez, E. R.; Srinivasan, S. Electrolyte effects on oxygen reduction kinetics at platinum: A rotating ring-disc electrode analysis. Electrochim. Acta 1983, 28, 691–697.

40

Tammeveski, K.; Tenno, T.; Claret, J.; Ferrater, C. Electrochemical reduction of oxygen on thin-film Pt electrodes in 0.1 M KOH. Electrochim. Acta 1997, 42, 893–897.

41

Kibsgaard, J.; Gorlin, Y.; Chen, Z. B.; Jaramillo, T. F. Meso-structured platinum thin films: Active and stable electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 7758–7765.

42
Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan. (n. d. ) [Online]. http://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 (accessed Jan 29, 2016).
43

Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971.

44

Ng, J. W. D.; Hellstern, T. R.; Kibsgaard, J.; Hinckley, A. C.; Benck, J. D.; Jaramillo, T. F. Polymer electrolyte membrane electrolyzers utilizing non-precious mo-based hydrogen evolution catalysts. ChemSusChem 2015, 8, 3512–3519.

45

Wen, Z. H.; Ci, S. Q.; Hou, Y.; Chen, J. H. Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6496–6500.

46

Stöhr, B.; Boehm, H.; Schlögl, R. Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon 1991, 29, 707–720.

47

Palaniselvam, T.; Valappil, M. O.; Illathvalappil, R.; Kurungot, S. Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ. Sci. 2014, 7, 1059–1067.

48

Waki, K.; Wong, R. A.; Oktaviano, H. S.; Fujio, T.; Nagai, T.; Kimoto, K.; Yamada, K. Non-nitrogen doped and non-metal oxygen reduction electrocatalysts based on carbon nanotubes: Mechanism and origin of ORR activity. Energy Environ. Sci. 2014, 7, 1950–1958.

49

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

50

Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

51

Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.

52

Kim, Y.; Ihm, J.; Yoon, E.; Lee, G. -D. Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 2011, 84, 075445.

53

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

54

Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2012, 2, 1654–1660.

55

Zhang, J. L.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 2005, 127, 12480–12481.

56

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

57

Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.

58

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

59

Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

60

Landon, J.; Demeter, E.; İnoğlu, N.; Keturakis, C.; Wachs, I. E.; Vasić, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793–1801.

61

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

62

Liang, C. D.; Dai, S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Am. Chem. Soc. 2006, 128, 5316–5317.

63

Ng, J. W. D.; Gorlin, Y.; Nordlund, D.; Jaramillo, T. F. Nanostructured manganese oxide supported onto particulate glassy carbon as an active and stable oxygen reduction catalyst in alkaline-based fuel cells. J. Electrochem. Soc. 2014, 161, D3105–D3112.

64

Bahn, S. R.; Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 2002, 4, 56–66.

65

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

66

Adllan, A. A.; Dal Corso, A. Ultrasoft pseudopotentials and projector augmented-wave data sets: Application to diatomic molecules. J. Phys. : Condens. Matter 2011, 23, 425501.

67

Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.; Landis, D. D.; Nørskov, J. K.; Bligaard, T.; Jacobsen, K. W. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 2012, 85, 235149.

68

Medford, A. J.; Wellendorff, J.; Vojvodic, A.; Studt, F.; Abild-Pedersen, F.; Jacobsen, K. W.; Bligaard, T.; Nørskov, J. K. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 2014, 345, 197–200.

Nano Research
Pages 1163-1177
Cite this article:
To JWF, Ng JWD, Siahrostami S, et al. High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Research, 2017, 10(4): 1163-1177. https://doi.org/10.1007/s12274-016-1347-8
Part of a topical collection:

848

Views

71

Crossref

N/A

Web of Science

73

Scopus

0

CSCD

Altmetrics

Received: 10 August 2016
Revised: 22 October 2016
Accepted: 24 October 2016
Published: 30 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return