Graphical Abstract

The transition from homogeneous to heterogeneous synthetic chemistry enabled by nanocatalysts necessitates investigations of the reaction mechanism and structure-activity relationships for inorganic nanoparticles and organic substrates. Herein, we report that hydrothermally synthesized ruthenium nanoparticles performed differently in the Se–Se bond activation and selenylation of heterocycles, exhibiting a volcano-shaped relationship between catalytic activity and composition. A synergistic effect was observed for Ru-RuOx nanocatalysts, with numerous characterizations and density functional theory (DFT) calculations suggesting that a PhSeSePh molecule can initially be adsorbed on the metallic Ru sites and cleaved into two PhSe* species, which subsequently migrate to RuOx sites and react with the nucleophile to achieve the selenylation of heterocycles.
Schlögl, R.; Hamid, S. B. A. Nanocatalysis: Mature science revisited or something really new? Angew. Chem., Int. Ed. 2004, 43, 1628–1637.
Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.
Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solutionbased synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.
Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.
Polshettiwar, V.; Varma, R. S. Green chemistry by nanocatalysis. Green Chem. 2010, 12, 743–754.
Zahmakıran, M.; Özkar, S. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale 2011, 3, 3462–3481.
Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837.
Li, Z. -X.; Xue, W.; Guan, B. -T.; Shi, F. -B.; Shi, Z. -J.; Jiang, H.; Yan, C. -H. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: Homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter. Nanoscale 2013, 5, 1213–1220.
Jiang, B. J.; Song, S. Z.; Wang, J. Q.; Xie, Y.; Chu, W. Y.; Li, H. F.; Xu, H.; Tian, C. G.; Fu, H. G. Nitrogen-doped graphene supported Pd@PdO core–shell clusters for C–C coupling reactions. Nano Res. 2014, 7, 1280–1290.
Wang, S. -B.; Zhu, W.; Ke, J.; Lin, M.; Zhang, Y. -W. Pd-Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward Suzuki cross-coupling reactions. ACS Catal. 2014, 4, 2298–2306.
Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L. -D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C. -H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601.
Wu, Y. E.; Li, Y. D. New understanding of phase segregation of bimetallic nanoalloys. Sci. China Mater. 2015, 58, 3–4.
Dai, L. -X.; Zhu, W.; Lin, M.; Zhang, Z. -P.; Gun, J.; Wang, Y. -H.; Zhang, Y. -W. Self-supported composites of thin Pt–Sn crosslinked nanowires for the highly chemoselective hydrogenation of cinnamaldehyde under ambient conditions. Inorg. Chem. Front. 2015, 2, 949–956.
Xiao, B.; Niu, Z. Q.; Wang, Y. -G.; Jia, W.; Shang, J.; Zhang, L.; Wang, D. S.; Fu, Y.; Zeng, J.; He, W. et al. Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides. J. Am. Chem. Soc. 2015, 137, 3791–3794.
Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.
Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. A.; Wang, Y.; Gao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632–2640.
Gong, M.; Wang, D. -Y.; Chen, C. -C.; Hwang, B. -J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.
Zhang, Z. -P.; Wang, X. -Y.; Yuan, K.; Zhu, W.; Zhang, T.; Wang, Y. -H.; Ke, J.; Zheng, X. -Y.; Yan, C. -H.; Zhang, Y. -W. Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. Nanoscale 2016, 8, 15744–15752.
Casini, A.; Winum, J. Y.; Montero, J. L.; Scozzafava, A.; Supuran, C. T. Carbonic anhydrase inhibitors: Inhibition of cytosolic isozymes Ⅰ and Ⅱ with sulfamide derivatives. Bioorg. Med. Chem. Lett. 2003, 13, 837–840.
Mellah, M.; Voituriez, A.; Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 2007, 107, 5133–5209.
Murphy, A. R.; Fré chet, J. M. J. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007, 107, 1066–1096.
Sato, T.; Nishio, M.; Ishii, Y.; Yamazaki, H.; Hidai, M. Synthesis and reactivities of the indenyl-ruthenium cluster [(η5-C9H7)Ru(μ-SEt)]3: Indenyl effect in the trinuclear ruthenium cluster. J. Organomet. Chem. 1998, 569, 99–108.
Belletti, D.; Graiff, C.; Lostao, V.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Sulfido–carbonyl ruthenium clusters derived from tertiary phosphine sulfides. Inorg. Chim. Acta 2003, 347, 137–144.
Becker, E.; Mereiter, K.; Schmid, R.; Kirchner, K. Facile S-S bond activation of alkyl and aryl disulfides by [RuCp(CH3CN)3]+: Formation of dinuclear Ru(Ⅲ)-Ru(Ⅲ) complexes with bridging thiolate ligands. Organometallics 2004, 23, 2876–2883.
Maiti, B. K.; Görls, H.; Klobes, O.; Imhof, W. A straightforward and generalizable synthetic methodology for the synthesis of ruthenium(Ⅱ) complexes with thioether ligands from either Ru(Ⅲ) or Ru(0) precursors. Dalton Trans. 2010, 39, 5713–5720.
Begum, N.; Hyder, M. I.; Hassan, M. R.; Kabir, S. E.; Bennett, D. W.; Haworth, D. T.; Siddiquee, T. A.; Rokhsana, D.; Sharmin, A.; Rosenberg, E. Facile E-E and E-C bond activation of PhEEPh (E = Te, Se, S) by ruthenium carbonyl clusters: Formation of di- and triruthenium complexes bearing bridging dppm and phenylchalcogenide and capping chalcogenido ligands. Organometallics 2008, 27, 1550–1560.
Nagarajaprakash, R.; Ramakrishna, B.; Mahesh, K.; Mobin, S. M.; Manimaran, B. One-pot synthesis of ruthenium metallacycles via oxidative addition of diaryldichalcogen and halogen across a Ru–Ru bond. Organometallics 2013, 32, 7292–7296.
Horiuchi, S.; Murasem, T.; Fujita, M. Noncovalent trapping and stabilization of dinuclear ruthenium complexes within a coordination cage. J. Am. Chem. Soc. 2011, 133, 12445–12447.
Yao, S. A.; Martin-Diaconescu, V.; Infante, I.; Lancaster, K. M.; Götz, A. W.; DeBeer, S.; Berry, J. F. Electronic structure of Ni2E2 complexes (E = S, Se, Te) and a global analysis of M2E2 compounds: A case for quantized E2n–oxidation levels with n = 2, 3, or 4. J. Am. Chem. Soc. 2015, 137, 4993–5011.
Aufieco, M.; Sperger, T.; Tsang, A. S. -K.; Schoenebeck, F. Highly efficient C-SeCF3 coupling of aryl iodides enabled by an air-stable dinuclear PdI catalyst. Angew. Chem., Int. Ed. 2015, 54, 10322–10326.
Yin, A. X.; Liu, W. -C.; Ke, J.; Zhu, W.; Gu, J.; Zhang, Y. -W.; Yan, C. -H. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479–20489.
Sang, P.; Chen, Z. K.; Zou, J. W.; Zhang, Y. H. K2CO3 promoted direct sulfenylation of indoles: A facile approach towards 3-sulfenylindoles. Green Chem. 2013, 15, 2096–2100.
Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. A solvent- and metal-free synthesis of 3-chacogenyl-indoles employing DMSO/I2 as an eco-friendly catalytic oxidation system. J. Org. Chem. 2014, 79, 4125–4130.
Vásquez-Céspedes, S.; Ferry, A.; Candish, L.; Glorius, F. Heterogeneously catalyzed direct C-H thiolation of heteroarenes. Angew. Chem., Int. Ed. 2015, 54, 5772–5776.
Ferreira, N. L.; Azeredo, J. B.; Fiorentin, B. L.; Braga, A. L. Synthesis of 3-selenylindoles under ecofriendly conditions. Eur. J. Org. Chem. 2015, 23, 5070–5074.
Lewera, A.; Zhou, W. P.; Vericat, C.; Chung, J. H.; Haasch, R.; Wieckowski, A.; Bagus, P. S. XPS and reactivity study of bimetallic nanoparticles containing Ru and Pt supported on a gold disk. Electrochim. Acta 2006, 51, 3950–3956.
Mazzieri, V.; Coloma-Pascual, F.; Arcoya, A.; L'Argentière, P. C.; Figoli, N. S. XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Appl. Surf. Sci. 2003, 210, 222–230.
Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts. Angew. Chem., Int. Ed. 2014, 53, 8348–8351.
Vogel, W.; Kaghazchi, P.; Jacob, T.; Alonso-Vante, N. Genesis of RuxSey nanoparticles by pyrolysis of Ru4Se2(CO)11: A combined X-ray in situ and DFT study. J. Phys. Chem. C 2007, 111, 3908–3913.
Inukai, J.; Cao, D. X.; Wieckowski, A.; Chang, K. -C.; Menzel, A.; Komanicky, V.; You, H. In situ synchrotron X-ray spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction. J. Phys. Chem. C 2007, 111, 16889–16894.
Haas, S.; Zehl, G.; Dorbandt, I.; Manke, I.; Bogdanoff, P.; Fiechter, S.; Hoell, A. Direct accessing the nanostructure of carbon supported Ru-Se based catalysts by ASAXS. J. Phys. Chem. C 2010, 114, 22375–22384.
Ramaswamy, N.; Allen, R. J.; Mukerjee, S. Electrochemical kinetics and X-ray absorption spectroscopic investigations of oxygen reduction on chalcogen-modified ruthenium catalysts in alkaline media. J. Phys. Chem. C 2011, 115, 12650–12664.
Cánaves, M. M.; Cabra, M. I.; Bauzá, A.; Cañellas, P.; Sánchez, K.; Orvay, F.; García-Raso, A.; Fiol, J. J.; Terrón, A.; Barceló-Oliver, M. et al. Crystal structures and DFT calculations of new chlorido-dimethylsulfoxide-M(Ⅲ) (M = Ir, Ru, Rh) complexes with the N-pyrazolyl pyrimidine donor ligand: Kinetic vs. thermodynamic isomers. Dalton Trans. 2014, 43, 6353–6364.
Gu, J.; Guo, Y.; Jiang, Y. -Y.; Zhu, W.; Xu, Y. -S.; Zhao, Z. -Q.; Liu, J. -X.; Li, W. -X.; Jin, C. -H.; Yan, C. -H. et al. Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J. Phys. Chem. C 2015, 119, 17697–17706.
Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.
Li, L. L.; Chen, X. B.; Wu, Y. E.; Wang, D. S.; Peng, Q.; Zhou, G.; Li, Y. D. Pd-Cu2O and Ag-Cu2O hybrid concave nanomaterials for an effective synergistic catalyst. Angew. Chem., Int. Ed. 2013, 52, 11049–11053.
Zhou, F.; Xin, S.; Liang, H. -W.; Song, L. -T.; Yu, S. -H. Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 11552–11556.
Qadir, K.; Joo, S. H.; Mun, B. S.; Butcher, D. R.; Renzas, J. R.; Aksoy, F.; Liu, Z.; Somorjai, G. A.; Park, J. Y. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett. 2012, 12, 5761–5768.
Lettenmeier, P.; Wang, L.; Golla-Schindler, U.; Gazdzicki, P.; Cañas, N. A.; Handl, M.; Hiesgen, R.; Hosseiny, S. S.; Gago, A. S.; Friedrich, K. A. Nanosized IrOx–Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew. Chem., Int. Ed. 2016, 55, 742–746.
Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.
Luska, K. L.; Bordet, A.; Tricard, S.; Sinev, I.; Grü nert, W.; Chaudret, B.; Leitner, W. Enhancing the catalytic properties of ruthenium nanoparticle-SILP catalysts by dilution with Iron. ACS Catal. 2016, 6, 3719–3726.
Xiao, C. X.; Goh, T. -W.; Qi, Z. Y.; Goes, S.; Brashler, K.; Perez, C.; Huang, W. Y. Conversion of Levulinic acid to γ-valerolactone over few-layer graphene-supported ruthenium catalysts. ACS Catal. 2016, 6, 593–599.