Graphical Abstract

Against general wisdom in crystallization, the nucleation of InP and Ⅲ-Ⅴ quantum dots (QDs) often dominates their growth. Systematic studies on InP QDs identified the key reason for this: the dense and tight alkanoate-ligand shell around each nanocrystal. Different strategies were explored to enable necessary ligand dynamics—i.e., ligands rapidly switching between being bonded to and detached from a nanocrystal upon thermal agitation—on nanocrystals to simultaneously retain colloidal stability and allow appreciable growth. Among all the surface-activation reagents tested, 2, 4-diketones (such as acetylacetone) allowed the full growth of InP QDs with indium alkanoates and trimethylsilylphosphine as precursors. While small fatty acids (such as acetic acid) were partially active, common neutral ligands (such as fatty amines, organophosphines, and phosphine oxides) showed limited activation effects. The existing amine-based synthesis of InP QDs was activated by acetic acid formed in situ. Surface activation with common precursors enabled the growth of InP QDs with a distinguishable absorption peak between ~450 and 650 nm at mild temperatures (140–180 ℃). Furthermore, surface activation was generally applicable for InAs and Ⅲ-Ⅴ based core/shell QDs.
Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.
Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.
Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.
Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.
Dingle, R.; Wiegmann, W.; Henry, C. H. Quantum states of confined carriers in very thin AlxGa1–xAs-GaAs-AlxGa1–xAs heterostructures. Phys. Rev. Lett. 1974, 33, 827–830.
Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors: An analogy to vaporliquid-solid growth. Science 1995, 270, 1791–1794.
Bimberg, D.; Grundmann, M.; Ledentsov, N. N. Growth, spectroscopy, and laser application of self-ordered Ⅲ-Ⅴ quantum dots. MRS Bull. 1998, 23, 31–34.
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.
Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. Highefficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.
Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98, 4966–4969.
Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. Synthesis of size-selected, surfacepassivated InP nanocrystals. J. Phys. Chem. 1996, 100, 7212–7219.
Guzelian, A. A.; Banin, U.; Kadavanich, A. V.; Peng, X.; Alivisatos, A. P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 1996, 69, 1432–1434.
Nozik, A. J.; Micic, O. I. Colloidal quantum dots of Ⅲ-Ⅴ semiconductors. MRS Bull. 1998, 23, 24–30.
Cao, Y. W.; Banin, U. Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem., Int. Ed. 1999, 38, 3692–3694.
Cao, Y. W.; Banin, U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J. Am. Chem. Soc. 2000, 122, 9692–9702.
Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.
Gary, D. C.; Terban, M. W.; Billinge, S. J. L.; Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 2015, 27, 1432–1441.
Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.
Lucey, D. W.; MacRae, D. J.; Furis, M.; Sahoo, Y.; Cartwright, A. N.; Prasad, P. N. Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent. Chem. Mater. 2005, 17, 3754–3762.
Xu, S.; Kumar, S.; Nann, T. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 2006, 128, 1054–1055.
Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.
Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.
Li, L.; Protiè re, M.; Reiss, P. Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor. Chem. Mater. 2008, 20, 2621–2623.
Allen, P. M.; Walker, B. J.; Bawendi, M. G. Mechanistic insights into the formation of InP quantum dots. Angew. Chem., Int. Ed. 2010, 49, 760–762.
Gary, D. C.; Glassy, B. A.; Cossairt, B. M. Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem. Mater. 2014, 26, 1734–1744.
Xie, L. S.; Harris, D. K.; Bawendi, M. G.; Jensen, K. F. Effect of trace water on the growth of indium phosphide quantum dots. Chem. Mater. 2015, 27, 5058–5063.
Gary, D. C.; Cossairt, B. M. Role of acid in precursor conversion during InP quantum dot synthesis. Chem. Mater. 2013, 25, 2463–2469.
Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nat. Chem. 2013, 5, 602–606.
Zhou, J. H.; Pu, C. D.; Jiao, T. Y.; Hou, X. Q.; Peng, X. G. A two-step synthetic strategy toward monodisperse colloidal CdSe and CdSe/CdS core/shell nanocrystals. J. Am. Chem. Soc. 2016, 138, 6475–6483.
Xie, R. G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core–shell nanocrystals. Angew. Chem., Int. Ed. 2008, 47, 7677–7680.
Harris, D. K.; Bawendi, M. G. Improved precursor chemistry for the synthesis of Ⅲ-Ⅴ quantum dots. J. Am. Chem. Soc. 2012, 134, 20211–20213.
Franke, D.; Harris, D. K.; Xie, L. S.; Jensen, K. F.; Bawendi, M. G. The unexpected influence of precursor conversion rate in the synthesis of Ⅲ-Ⅴ quantum dots. Angew. Chem., Int. Ed. 2015, 54, 14299–14303.
Mullin, J. W. Crystallization; Butterworth: Oxford, UK, 1997.
Joung, S.; Yoon, S.; Han, C. S.; Kim, Y.; Jeong, S. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine. Nanoscale Res. Lett. 2012, 7, 93.
Song, W. S.; Lee, H. S.; Lee, J. C.; Jang, D. S.; Choi, Y.; Choi, M.; Yang, H. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 2013, 15, 1750.
Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 2015, 27, 4893–4898.
Kim, K.; Yoo, D.; Choi, H.; Tamang, S.; Ko, J. H.; Kim, S.; Kim, Y. H.; Jeong, S. Halide-amine co-passivated indium phosphide colloidal quantum dots in tetrahedral shape. Angew. Chem., Int. Ed. 2016, 55, 3714–3718.
Xie, R. G.; Li, Z.; Peng, X. G. Nucleation kinetics vs. chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457–15466.
Tessier, M. D.; De Nolf, K.; Dupont, D.; Sinnaeve, D.; De Roo, J.; Hens, Z. Aminophosphines: A double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 2016, 138, 5923–5929.
Buffard, A.; Dreyfuss, S.; Nadal, B.; Heuclin, H.; Xu, X. Z.; Patriarche, G.; Mézailles, N.; Dubertret, B. Mechanistic insight and optimization of InP nanocrystals synthesized with aminophosphines. Chem. Mater. 2016, 28, 5925–5934.
Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.
Lamer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.
Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.
Bala, T.; Prasad, B. L. V.; Sastry, M.; Kahaly, M. U.; Waghmare, U. V. Interaction of different metal ions with carboxylic acid group: A quantitative study. J. Phys. Chem. A 2007, 111, 6183–6190.
Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M.; Peng, X. G. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs. pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310–10319.
Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. Surface chemistry of InP quantum dots: A comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147–18157.
Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W. -S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708.
Yang, Y.; Li, J. Z.; Lin, L.; Peng, X. G. An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Res. 2015, 8, 3353–3364.
Gary, D. C.; Flowers, S. E.; Kaminsky, W.; Petrone, A.; Li, X. S.; Cossairt, B. M. Single-crystal and electronic structure of a 1.3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 2016, 138, 1510–1513.
Chen, O.; Yang, Y. A.; Wang, T.; Wu, H. M.; Niu, C. G.; Yang, J. H.; Cao, Y. C. Surface-functionalization-dependent optical properties of Ⅱ-Ⅵ semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 17504–17512.
Li, Z.; Ji, Y. J.; Xie, R. G.; Grisham, S. Y.; Peng, X. G. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J. Am. Chem. Soc. 2011, 133, 17248–17256.
Haubold, S.; Haase, M.; Kornowski, A.; Weller, H. Strongly luminescent InP/ZnS core–shell nanoparticles. ChemPhysChem 2001, 2, 331–334.
Lowrey, A. H.; George, C.; D'Antonio, P.; Karle, J. Structure of acetylacetone by electron diffraction. J. Am. Chem. Soc. 1971, 93, 6399–6403.
Nakamura, Y.; Isobe, K.; Morita, H.; Yamazaki, S.; Kawaguchi, S. Metal complexes containing acetylacetone as a neutral ligand. Inorg. Chem. 1972, 11, 1573–1578.
Gomes, R.; Hassinen, A.; Szczygiel, A.; Zhao, Q. A.; Vantomme, A.; Martins, J. C.; Hens, Z. Binding of phosphonic acids to CdSe quantum dots: A solution NMR study. J. Phys. Chem. Lett. 2011, 2, 145–152.
Baek, J.; Allen, P. M.; Bawendi, M. G.; Jensen, K. F. Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. Angew. Chem., Int. Ed. 2011, 50, 627–630.
Chang, S. M.; Hsu, Y. Y.; Chan, T. S. Chemical capture of phosphine by a sol–gel-derived Cu/TiO2 adsorbent—Interaction mechanisms. J. Phys. Chem. C 2011, 115, 2005–2013.
Ryu, E.; Kim, S.; Jang, E.; Jun, S.; Jang, H.; Kim, B.; Kim, S. W. Step-wise synthesis of InP/ZnS core–shell quantum dots and the role of zinc acetate. Chem. Mater. 2009, 21, 573–575.
Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability. Chem. Mater. 2011, 23, 4459–4463.
Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.