AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values

Jianwen Huang1,2Yanrong Li1Yufei Xia2Juntong Zhu2Qinghua Yi2Hao Wang2Jie Xiong1( )Yinghui Sun2( )Guifu Zou2( )
State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
College of Physics, Optoelectronics and EnergyInstitute of Chemical Power Sources & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow UniversitySuzhou215006China
Show Author Information

Graphical Abstract

Abstract

High-performance electrocatalysts for water splitting at all pH values have attracted considerable interest in the field of sustainable hydrogen evolution. Herein, we report an efficient electrocatalyst with a nanocrystalline cobalt phosphide (CoP) network for water splitting in the pH range of 0-14. The novel flexible electrocatalyst is derived from a desirable nanocrystalline CoP network grown on a conductive Hastelloy belt. This kind of self-supported CoP network is directly used as an electrocatalytic cathode for hydrogen evolution. The nanocrystalline network structure results in superior performance with a low onset overpotential of ~45 mV over a broad pH range of 0 to 14 and affords a catalytic current density of 100 mA·cm-2 even in neutral media. The CoP network exhibits excellent catalytic properties not only at extreme pH values (0 and 14) but also in neutral media (pH = 7), which is comparable to the behavior of state-of-the-art platinum-based metals. The system exhibits an excellent flexible property and maintains remarkable catalytic stability during continuous 100-h-long electrolysis even after 100 cycles of bending/extending from 100° to 250°.

Electronic Supplementary Material

Video
nr-10-3-1010_ESM1.avi
nr-10-3-1010_ESM2.avi
nr-10-3-1010_ESM3.avi
Download File(s)
nr-10-3-1010_ESM.pdf (4.1 MB)

References

1

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.

2

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

3

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.

4

Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.

5

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.

6

Chia, X.; Eng, A. Y. S.; Ambrosi, A.; Tan, S. M.; Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 2015, 115, 11941-11966.

7

Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First- row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553-3558.

8

Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-14026.

9

Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high- performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. , Int. Ed. 2014, 53, 9577-9581.

10

Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. , Int. Ed. 2014, 53, 12855-12859.

11

Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 2015, 15, 7616-7620.

12

Tang, C. Y.; Wang, W.; Sun, A. K.; Qi, C. K.; Zhang, D. Z.; Wu, Z. Z.; Wang, D. Z. Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution. ACS Catal. 2015, 5, 6956-6963.

13

Liu, Y. P.; Yu, G. T.; Li, G. -D.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew. Chem., Int. Ed. 2015, 54, 10752-10757.

14

Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.

15

Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897-4900.

16

Cai, Z. X.; Song, X. H.; Wang, Y. R.; Chen, X. Electrodeposition-assisted synthesis of Ni2P nanosheets on 3D graphene/Ni foam electrode and its performance for electrocatalytic hydrogen production. ChemElectroChem 2015, 2, 1665-1671.

17

Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234-2243.

18

Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.

19

Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373-382.

20

Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J. Component-controllable WS2(1-x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 2014, 8, 8468-8476.

21

Xu, S. J.; Li, D.; Wu, P. Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2015, 25, 1127-1136.

22

Jiang, Z. L.; Tang, Y. X.; Tay, Q.; Zhang, Y. Y.; Malyi, O. I.; Wang, D. P.; Deng, J. Y.; Lai, Y. K.; Zhou, H. F.; Chen, X. D. et al. Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv. Energy Mater. 2013, 3, 1368-1380.

23

Ye, T. N.; Lv, L. B.; Xu, M.; Zhang, B.; Wang, K. X.; Su, J.; Li, X. H.; Chen, J. S. Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. Nano Energy 2015, 15, 335-342.

24

Jin, Y. S.; Wang, H. T.; Li, J. J.; Yue, X.; Han, Y. J.; Shen, P. K.; Cui, Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2016, 28, 3785-3790.

25

Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067-4077.

26

Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251-2259.

27

Kleingardner, J. G.; Kandemir, B.; Bren, K. L. Hydrogen evolution from neutral water under aerobic conditions catalyzed by cobalt microperoxidase-11. J. Am. Chem. Soc. 2014, 136, 4-7.

28

Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. J. Hollow cobalt- based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359-1365.

29

Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH- universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197-203.

30

Gong, M.; Wang, D. -Y.; Chen, C. -C.; Hwang, B. -J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28-46.

31

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.

32

Gu, S.; Du, H. F.; Asiri, A. M.; Sun, X. P.; Li, C. M. Three- dimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode. Phys. Chem. Chem. Phys. 2014, 16, 16909-16913.

33

Gao, W.; Wu, G.; Janicke, M. T.; Cullen, D. A.; Mukundan, R.; Baldwin, J. K.; Brosha, E. L.; Galande, C.; Ajayan, P. M.; More, K. L. et al. Ozonated graphene oxide film as a proton-exchange membrane. Angew. Chem., Int. Ed. 2014, 53, 3588-3593.

34

Escapa, A.; Mateos, R.; Martinez, E. J.; Blanes, J. Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew. Sustain. Energy Rev. 2016, 55, 942-956.

35

Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307-326.

36

Wu, Y. Z.; Chen, M. X.; Han, Y. Z.; Luo, H. X.; Su, X. J.; Zhang, M. T.; Lin, X. H.; Sun, J. L.; Wang, L.; Deng, L. et al. Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution. Angew. Chem., Int. Ed. 2015, 54, 4870-4875.

37

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

38

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.

39

Feng, J. -X.; Xu, H.; Dong, Y. -T.; Ye, S. -H.; Tong, Y. X.; Li, G. -R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 128, 3758-3762.

40
Ha, D. -H.; Han, B. H.; Risch, M.; Giordano, L.; Yao, K. P. C.; Karayaylali, P.; Shao-Horn, Y. Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy, in press, DOI: 10.1016/j.nanoen.2016.04.034.https://doi.org/10.1016/j.nanoen.2016.04.034
41

Li, L. L.; Chen, C.; Chen, L.; Zhu, Z. X.; Hu, J. L. Catalytic decomposition of toxic chemicals over iron group metals supported on carbon nanotubes. Environ. Sci. Technol. 2014, 48, 3372-3377.

42

You, B.; Jiang, N.; Sheng, M. L.; Bhushan, M. W.; Sun, Y. J. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 2016, 6, 714-721.

43

Yang, X. L.; Lu, A. -Y.; Zhu, Y. H.; Hedhili, M. N.; Min, S. X.; Huang, K. -W.; Han, Y.; Li, L. -J. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy 2015, 15, 634-641.

44

Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337-7347.

45

Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

46

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

47

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W. D.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807-5813.

48

Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 2016, 28, 77-85.

49

Yang, Z. H.; Liu, L.; Wang, X. Y.; Yang, S. Y.; Su, X. P. Stability and electronic structure of the Co-P compounds from first-principle calculations. J. Alloys Compd. 2011, 509, 165-171.

50

Barton, B. E.; Rauchfuss, T. B. Hydride-containing models for the active site of the nickel-iron hydrogenases. J. Am. Chem. Soc. 2010, 132, 14877-14885.

51

Nicolet, Y.; de Lacey, A. L.; Vernède, X.; Fernandez, V. M.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 2001, 123, 1596-1601.

Nano Research
Pages 1010-1020
Cite this article:
Huang J, Li Y, Xia Y, et al. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Research, 2017, 10(3): 1010-1020. https://doi.org/10.1007/s12274-016-1360-y

692

Views

74

Crossref

N/A

Web of Science

78

Scopus

7

CSCD

Altmetrics

Received: 26 August 2016
Revised: 19 October 2016
Accepted: 04 November 2016
Published: 18 January 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return