Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We synthesized Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles via an easy and scalable solution synthesis. The synthesized Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles were annealed to remove the organic surfactants without phase transitions or side reactions. Electrons can be transferred via metallic Cu3.8Ni, which will not react with lithium ions. The heterogeneous structures of Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles could enhance the lithium ion mobility and improve the life cycle, and these materials are therefore promising candidates as high- power-density and high-energy-density anode materials for lithium-ion batteries in diverse applications, such as electrical vehicles.
Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609-4613.
Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater. 2007, 19, 3032-3040.
Gao, J.; Lowe, M. A.; Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 2011, 23, 3223-3227.
Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 13826-13831.
Sharma, N.; Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R. Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochim. Acta 2004, 49, 1035-1043.
Hu, J.; Li, H.; Huang, X. J.; Chen, L. Q. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ionics 2006, 177, 2791-2799.
Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195, 3300-3308.
Lee, J.; Zhu, H. Z.; Yadav, G. G.; Caruthers, J.; Wu, Y. Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 2016, 9, 996-1004.
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.
Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046-3052.
Wen, Z. H.; Wang, Q.; Zhang, Q.; Li, J. H. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772-2778.
Yang, Y.; Liang, Q. Q.; Li, J. H.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 2011, 4, 882-890.
Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 2003, 150, A133-A139.
Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632-637.
Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2- nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770-21774.
Greiner, M. T.; Helander, M. G.; Tang, W. M.; Wang, Z. B.; Qiu, J.; Lu, Z. H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2012, 11, 76-81.
Rao, C. N. R.; Rao, G. V. S. Electrical conduction in metal oxides. Phys. Status Solidi A 1970, 1, 597-652.
Kim, M. G.; Sim, S.; Cho, J. Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox- transmetalation reaction. Adv. Mater. 2010, 22, 5154-5158.
Lee, H.; Cho, J. Sn78Ge22@carbon core-shell nanowires as fast and high-capacity lithium storage media. Nano Lett. 2007, 7, 2638-2641.
Su, L. W.; Jing, Y.; Zhou, Z. Li ion battery materials with core-shell nanostructures. Nanoscale 2011, 3, 3967-3983.
Liu, Y. M.; Zhao, X. Y.; Li, F.; Xia, D. G. Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56, 6448-6452.
Yuan, W. W.; Zhang, J.; Xie, D.; Dong, Z. M.; Su, Q. M.; Du, G. H. Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochim. Acta 2013, 108, 506-511.
Fransson, L.; Eriksson, T.; Edström, K.; Gustafsson, T.; Thomas, J. O. Influence of carbon black and binder on Li-ion batteries. J. Power Sources 2001, 101, 1-9.
Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567-573.
Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.
Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.
Zhang, Y. W.; Huang, W. Y.; Habas, S. E.; Kuhn, J. N.; Grass, M. E.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Near- monodisperse Ni-Cu bimetallic nanocrystals of variable composition: Controlled synthesis and catalytic activity for H2 generation. J. Phys. Chem. C 2008, 112, 12092-12095.
Oliveira, F. C. C.; Effenberger, F. B.; Sousa, M. H.; Jardim, R. F.; Kiyohara, P. K.; Dupont, J.; Rubim, J. C.; Rossi, L. M. Ionic liquids as recycling solvents for the synthesis of magnetic nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 13558-13564.
Li, X.; Tang, A. W.; Li, J. T.; Guan, L.; Dong, G. Y.; Teng, F. Heating-up synthesis of MoS2 nanosheets and their electrical bistability performance. Nanoscale Res. Lett. 2016, 11, 171.
Vijayaraghavan, B.; Ely, D. R.; Chiang, Y. M.; García- García, R.; García, R. E. An analytical method to determine tortuosity in rechargeable battery electrodes. J. Electrochem. Soc. 2012, 159, A548-A552.
Zheng, X. F.; Shen, G. F.; Li, Y.; Duan, H. N.; Yang, X. Y.; Huang, S. Z.; Wang, H. G.; Wang, C.; Deng, Z.; Su, B. -L. Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1394-1400.
Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376-387.
Guo, D.; Xie, G. X.; Luo, J. B. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D: Appl. Phys. 2014, 47, 013001.
He, J. B.; Kanjanaboos, P.; Frazer, N. L.; Weis, A.; Lin, X. M.; Jaeger, H. M. Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 2010, 6, 1449-1456.
Liu, J. F.; He, Y.; Chen, W.; Zhang, G. Q.; Zeng, Y. W.; Kikegawa, T.; Jiang, J. Z. Bulk modulus and structural phase transitions of wurtzite CoO nanocrystals. J. Phys. Chem. C 2007, 111, 2-5.