AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanosphere molecularly imprinted polymers doped with gold nanoparticles for high selectivity molecular sensors

Tehila ShaharTama SicronDaniel Mandler( )
Institute of ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
Show Author Information

Graphical Abstract

Abstract

We report the first attempt of using molecularly imprinted polymers (MIPs) in the shape of nanoparticles that were doped with gold nanoparticles (AuNPs) for surface enhanced Raman scattering (SERS)-based sensing of molecular species. Specifically, AuNPs doped molecularly imprinted nano-spheres (AuNPs@nanoMIPs) were synthesized by one-pot precipitation polymerization using Sudan IV as the template for the SERS sensing. The AuNPs@nanoMIPs were characterized by various modes of scanning transmission electron microscopy (STEM) that showed the exact location of the AuNPs inside the MIP particles. The effects of Au concentration and solution stirring on the shape and the polydispersity of the particles were studied. Significant enhancement of the Raman signals was observed only when the MIP particles were doped with the AuNPs. The SERS signal improved significantly with increase in the Au concentration inside the AuNPs@nanoMIPs. Selectivity measurements of the Sudan IV imprinted AuNPs@nanoMIPs carried out with different Sudan derivatives showed high selectivity of the AuNPs-doped MIP particles.

Electronic Supplementary Material

Download File(s)
nr-10-3-1056_ESM.pdf (2.8 MB)

References

1

Cheong, W. J.; Yang, S. H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609-628.

2

Taguchi, Y.; Takano, E.; Takeuchi, T. SPR sensing of bisphenol A using molecularly imprinted nanoparticles immobilized on slab optical waveguide with consecutive parallel Au and Ag deposition bands coexistent with bisphenol A-immobilized Au nanoparticles. Langmuir 2012, 28, 7083-7088.

3

Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Anal. Chim. Acta 2007, 584, 112-121.

4

Xie, C. G.; Zhang, Z. P.; Wang, D. P.; Guan, G. J.; Gao, D. M.; Liu, J. H. Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal. Chem. 2006, 78, 8339-8346.

5

Basozabal, I.; Guerreiro, A.; Gomez-Caballero, A.; Aranzazu Goicolea, M.; Barrio, R. J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron. 2014, 58, 138-144.

6

Congur, G.; Senay, H.; Turkcan, C.; Canavar, E.; Erdem, A.; Akgol, S. Estrone specific molecularly imprinted polymeric nanospheres: Synthesis, characterization and applications for electrochemical sensor development. Comb. Chem. High Throughput Screen. 2013, 16, 503-510.

7

Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron. 2013, 44, 34-40.

8

Sener, G.; Ozgur, E.; Yilmaz, E.; Uzun, L.; Say, R.; Denizli, A. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens. Bioelectron. 2010, 26, 815-821.

9

Ivanova-Mitseva, P. K.; Guerreiro, A.; Piletska, E. V.; Whitcombe, M. J.; Zhou, Z. X.; Mitsev, P. A.; Davis, F.; Piletsky, S. A. Cubic molecularly imprinted polymer nanoparticles with a fluorescent core. Angew. Chem., Int. Ed. 2012, 51, 5196-5199.

10

Sener, G.; Uzun, L.; Say, R.; Denizli, A. Use of molecular imprinted nanoparticles as biorecognition element on surface plasmon resonance sensor. Sens. Actuators B Chem. 2011, 160, 791-799.

11

Chang, L. M.; Ding, Y.; Li, X. Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications. Biosens. Bioelectron. 2013, 50, 106-110.

12

Wackerlig, J.; Lieberzeit, P. A. Molecularly imprinted polymer nanoparticles in chemical sensing-synthesis, characterisation and application. Sens. Actuators B Chem. 2015, 207, 144-157.

13

Qiu, J. J.; Wei, W. D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C 2014, 118, 20735-20749.

14

Ahmad, R.; Griffete, N.; Lamouri, A.; Felidj, N.; Chehimi, M. M.; Mangeney, C. Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: Chemistry, processing, and applications in sensors. Chem. Mat. 2015, 27, 5464-5478.

15

Gholivand, M. B.; Torkashvand, M. The fabrication of a new electrochemical sensor based on electropolymerization of nanocomposite gold nanoparticle-molecularly imprinted polymer for determination of valganciclovir. Mater. Sci. Eng. C 2016, 59, 594-603.

16

Wang, X. J.; Luo, C. N.; Li, L. L.; Duan, H. M. An ultrasensitive molecularly imprinted electrochemical sensor based on graphene oxide/carboxylated multiwalled carbon nanotube/ionic liquid/gold nanoparticle composites for vanillin analysis. RSC Adv. 2015, 5, 92932-92939.

17

Peng, D. H.; Li, X.; Zhang, L. Z.; Gong, J. M. Novel visible-light-responsive photoelectrochemical sensor of 2, 4- dichlorophenoxyacetic acid using molecularly imprinted polymer/BiOI nanoflake arrays. Electrochem. Commun. 2014, 47, 9-12.

18

Metzger, T. S.; Tel-Vered, R.; Willner, I. Controlled vectorial electron transfer and photoelectrochemical applications of layered relay/photosensitizer-imprinted Au nanoparticle architectures on electrodes. Small 2016, 12, 1605-1614.

19

Kong, L. J.; Pan, M. F.; Fang, G. Z.; He, X. L.; Yang, Y. K.; Dai, J.; Wang, S. Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination. Biosens. Bioelectron. 2014, 51, 286-292.

20

Iqbal, N.; Afzal, A.; Mujahid, A. Layer-by-layer assembly of low-temperature-imprinted poly(methacrylic acid)/gold nanoparticle hybrids for gaseous formaldehyde mass sensing. RSC Adv. 2014, 4, 43121-43130.

21

Yao, T.; Gu, X.; Li, T. F.; Li, J. G.; Li, J.; Zhao, Z.; Wang, J.; Qin, Y. C.; She, Y. X. Enhancement of surface plasmon resonance signals using a MIP/GNPs/rGO nano-hybrid film for the rapid detection of ractopamine. Biosens. Bioelectron. 2016, 75, 96-100.

22

Cennamo, N.; Donà, A.; Pallavicini, P.; D'Agostino, G.; Dacarro, G.; Zeni, L.; Pesavento, M. Sensitive detection of 2, 4, 6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five- branched gold nanostars. Sens. Actuators B Chem. 2015, 208, 291-298.

23

Ahmad, R.; Félidj, N.; Boubekeur-Lecaque, L.; Lau-Truong, S.; Gam-Derouich, S.; Decorse, P.; Lamouri, A.; Mangeney, C. Water-soluble plasmonic nanosensors with synthetic receptors for label-free detection of folic acid. Chem. Commun. 2015, 51, 9678-9681.

24

Lv, Y. Q.; Qin, Y. T.; Svec, F.; Tan, T. W. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens. Bioelectron. 2016, 80, 433-441.

25

Gültekin, A.; Ersöz, A.; Hür, D.; Sariözlü, N. Y.; Denizli, A.; Say, R. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition. Appl. Surf. Sci. 2009, 256, 142-148.

26

Gültekin, A.; Ersöz, A.; Denizli, A.; Say, R. Preparation of new molecularly imprinted nanosensor for cholic acid determination. Sens. Actuators B Chem. 2012, 162, 153-158.

27

Bompart, M.; De Wilde, Y.; Haupt, K. Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Adv. Mater. 2010, 22, 2343-2348.

28

Xue, J. Q.; Li, D. W.; Qu, L. L.; Long, Y. T. Surface- imprinted core-shell Au nanoparticles for selective detection of bisphenol a based on surface-enhanced Raman scattering. Anal. Chim. Acta 2013, 777, 57-62.

29

Rauh, A.; Honold, T.; Karg, M. Seeded precipitation polymerization for the synthesis of gold-hydrogel core-shell particles: The role of surface functionalization and seed concentration. Colloid Polym. Sci. 2016, 294, 37-47.

30

Shahar, T.; Tal, N.; Mandler, D. Molecularly imprinted polymer particles: Formation, characterization and application. Colloids Surf. A-Physicochem. Eng. Asp. 2016, 495, 11-19.

31

Zhang, X. X.; Fan, Y. F.; Tao, X. M.; Yick, K. L. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater. Chem. Phys. 2004, 88, 300-307.

32

Rezaei, B.; Boroujeni, M. K.; Ensafi, A. A. Development of sudan Ⅱ sensor based on modified treated pencil graphite electrode with DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer. Sens. Actuators B Chem. 2016, 222, 849-856.

33

Kou, X.; Lei, J. D.; Geng, L. Y.; Deng, H. Q.; Jiang, Q. Y.; Zhang, G. F.; Ma, G. H.; Su, Z. G. Synthesis, characterization and adsorption behavior of molecularly imprinted nanospheres for erythromycin using precipitation polymerization. J. Nanosci. Nanotechnol. 2012, 12, 7388-7394.

Nano Research
Pages 1056-1063
Cite this article:
Shahar T, Sicron T, Mandler D. Nanosphere molecularly imprinted polymers doped with gold nanoparticles for high selectivity molecular sensors. Nano Research, 2017, 10(3): 1056-1063. https://doi.org/10.1007/s12274-016-1366-5

619

Views

45

Crossref

N/A

Web of Science

44

Scopus

0

CSCD

Altmetrics

Received: 24 September 2016
Revised: 04 November 2016
Accepted: 09 November 2016
Published: 20 January 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return