AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Template-directed synthesis of nitrogen- and sulfur- codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction

Shaofang Fu1Chengzhou Zhu1Junhua Song1Mark H. Engelhard2Xiaolin Li3Peina Zhang4Haibing Xia4Dan Du1Yuehe Lin1,2( )
School of Mechanical and Materials Engineering Washington State UniversityWA 99164 USA
Environmental Molecular Science Laboratory Pacific Northwest National Laboratory RichlandWA 99354 USA
Energy and Environmental Directory Pacific Northwest National Laboratory RichlandWA 99354 USA
State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
Show Author Information

Graphical Abstract

Abstract

Heteroatom doping, precise composition control, and rational morphology design are efficient strategies for producing novel nanocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Herein, a cost-effective approach to synthesize nitrogen- and sulfur-codoped carbon nanowire aerogels using a hard templating method is proposed. The aerogels prepared using a combination of hydrothermal treatment and carbonization exhibit good catalytic activity for the ORR in alkaline solution. At the optimal annealing temperature and mass ratio between the nitrogen and sulfur precursors, the resultant aerogels show comparable electrocatalytic activity to that of a commercial Pt/C catalyst for the ORR. Importantly, the optimized catalyst shows much better long-term stability and satisfactory tolerance for the methanol crossover effect. These codoped aerogels are expected to have potential applications in fuel cells.

Electronic Supplementary Material

Download File(s)
nr-10-6-1888_ESM.pdf (2.1 MB)

References

1

Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. Recent progress in nanostructured electrocatalysts for PEM fuel cells. J. Mater. Chem. A 2013, 1, 4631–4641.

2

Zhu, C. Z.; Du, D.; Eychmuller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

3

Liang, H. W.; Wu, Z. Y.; Chen, L. F.; Li, C.; Yu, S. H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015, 11, 366–376.

4

Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

5

Kibsgaard, J.; Gorlin, Y.; Chen, Z. B.; Jaramillo, T. F. Meso-structured platinum thin films: Active and stable electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 7758–7765.

6

Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem., Int. Ed. 2011, 50, 422–426.

7

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

8

Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.

9

Song, J. H.; Zhu, C. Z.; Fu, S. F.; Song, Y.; Du, D.; Lin, Y. H. Optimization of cobalt/nitrogen embedded carbon nanotubes as an efficient bifunctional oxygen electrode for rechargeable zinc-air batteries. J. Mater. Chem. A 2016, 4, 4864–4870.

10

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

11

Yasuda, S.; Furuya, A.; Uchibori, Y.; Kim, J.; Murakoshi, K. Iron-nitrogen-doped vertically aligned carbon nanotube electrocatalyst for the oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 738–744.

12

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High- performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

13

Fu, S. F.; Zhu, C. Z.; Li, H.; Du, D.; Lin, Y. H. One-step synthesis of cobalt and nitrogen Co-doped carbon nanotubes and their catalytic activity for the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 12718–12722.

14

Fu, S. F.; Zhu, C. Z.; Zhou, Y. Z.; Yang, G. H.; Jeon, J. W.; Lemmon, J.; Du, D.; Nune, S. K.; Lin, Y. H. Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2015, 178, 287–293.

15

Liu, S. W.; Zhang, H. M.; Zhao, Q.; Zhang, X.; Liu, R. R.; Ge, X.; Wang, G. Z.; Zhao, H. J.; Cai, W. P. Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon 2016, 106, 74–83.

16

Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2010, 122, 2619–2623.

17

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

18

Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 2016, 55, 2230–2234.

19

Zhou, Y. Z.; Yen, C. H.; Fu, S. F.; Yang, G. H.; Zhu, C. Z.; Du, D.; Wo, P. C.; Cheng, X. N.; Yang, J.; Wai, C. M. et al. One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction. Green Chem. 2015, 17, 3552–3560.

20

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

21

Zhang, J. T.; Dai, L. M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal. 2015, 5, 7244–7253.

22

Xia, B. Y.; Yan, Y.; Wang, X.; Lou, X. W. Recent progress on graphene-based hybrid electrocatalysts. Mater. Horiz. 2014, 1, 379–399.

23

Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 2014, 26, 2925–2930.

24

Cheng, Y. W.; Zhang, H. B.; Varanasi, C. V.; Liu, J. Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes. Sci. Rep. 2013, 3, 3195.

25

Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 2015, 9, 6288–6296.

26

Tang, J.; Liu, J.; Li, C. L.; Li, Y. Q.; Tade, M. O.; Dai, S.; Yamauchi, Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem., Int. Ed. 2015, 54, 588–593.

27

Wei, W.; Tao, Y.; Lv, W.; Su, F. Y.; Ke, L.; Li, J.; Wang, D. W.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Unusual high oxygen reduction performance in all-carbon electrocatalysts. Sci. Rep. 2014, 4, 6289.

28

Song, L. T.; Wu, Z. Y.; Liang, H. W.; Zhou, F.; Yu, Z. Y.; Xu, L.; Pan, Z.; Yu, S. H. Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy 2016, 19, 117–127.

29

Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

30

Liang, H. W.; Cao, X.; Zhang, W. J.; Lin, H. T.; Zhou, F.; Chen, L. F.; Yu, S. H. Robust and highly efficient free- standing carbonaceous nanofiber membranes for water purification. Adv. Funct. Mater. 2011, 21, 3851–3858.

31

Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101–5105.

32

Kumar, N. A.; Nolan, H.; McEvoy, N.; Rezvani, E.; Doyle, R. L.; Lyons, M. E. G.; Duesberg, G. S. Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J. Mater. Chem. A 2013, 1, 4431–4435.

33

Liu, Z. W.; Fu, X.; Li, M.; Wang, F.; Wang, Q. D.; Kang, G. J.; Peng, F. Novel silicon-doped, silicon and nitrogen-codoped carbon nanomaterials with high activity for the oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 2015, 3, 3289–3293.

34

Men, B.; Sun, Y. Z.; Li, M. J.; Hu, C. Q.; Zhang, M.; Wang, L. N.; Tang, Y.; Chen, Y. M.; Wan, P. Y.; Pan, J. Q. Hierarchical metal-free nitrogen-doped porous graphene/ carbon composites as an efficient oxygen reduction reaction catalyst. ACS Appl. Mater. Interfaces 2016, 8, 1415–1423.

35

Mao, S.; Wen, Z. H.; Huang, T. Z.; Hou, Y.; Chen, J. H. High-performance Bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ. Sci. 2014, 7, 609–616.

36

Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

37

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

Nano Research
Pages 1888-1895
Cite this article:
Fu S, Zhu C, Song J, et al. Template-directed synthesis of nitrogen- and sulfur- codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Research, 2017, 10(6): 1888-1895. https://doi.org/10.1007/s12274-016-1371-8

742

Views

35

Crossref

N/A

Web of Science

33

Scopus

3

CSCD

Altmetrics

Received: 02 September 2016
Revised: 03 November 2016
Accepted: 14 November 2016
Published: 20 December 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return