AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions

Xiaobing Bao§Yutong Gong§Jiang DengShiping WangYong Wang( )
Advanced Materials and Catalysis Group, ZJU-NHU United R & D CenterCenter for Chemistry of High-Performance and Novel MaterialsDepartment of Chemistry, Zhejiang UniversityHangzhou310028China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The scalable preparation of multi-functional three-dimensional (3D) carbon nanotubes and graphene (CNTs-G) hybrids via a well-controlled route is urgently required and challenging. Herein, an easily operated, oxalic acid-assisted method was developed for the in situ fabrication of a 3D lasagna-like Fe-N-doped CNTs-G framework (LMFC) from a precursor designed at the molecular level. The well-organized architecture of LMFC was constructed by multi-dimensionally interconnected graphene and CNTs which derived from porous graphene sheets, to form a fundamentally robust and hierarchical porous structure, as well as favorable conductive networks. The impressive oxygen reduction reaction (ORR) performances in both alkaline and acidic conditions helped confirm the significance of this technically favorable morphological structure. This product was also the subject of research for the exploration of decisive effects on the performance of ORR catalysts with reasonable control variables. The present work further advances the construction of novel 3D carbon architectures via practical and economic routes.

Electronic Supplementary Material

Download File(s)
nr-10-4-1258_ESM.pdf (5.1 MB)

References

1

Sevilla, M.; Fuertes, A. B. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 2014, 8, 5069-5078.

2

Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ. Sci. 2014, 7, 1564-1596.

3

Kim, S. H.; Song, W.; Jung, M. W.; Kang, M. -A.; Kim, K.; Chang, S. -J.; Lee, S. S.; Lim, J.; Hwang, J.; Myung, S. et al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv. Mater. 2014, 26, 4247-4252.

4

Wang, W.; Guo, S. R.; Penchev, M.; Ruiz, I.; Bozhilov, K. N.; Yan, D.; Ozkan, M.; Ozkan, C. S. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2013, 2, 294-303.

5

Xue, Y. H.; Liu, J.; Chen, H.; Wang, R. G.; Li, D. Q.; Qu, J.; Dai, L. M. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem., Int. Ed. 2012, 51, 12124-12127.

6

Chen, J. Z.; Xu, J. L.; Zhou, S.; Zhao, N.; Wong, C. -P. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high- performance supercapacitors. Nano Energy 2016, 25, 193-202.

7

Ma, Y. W.; Sun, L. Y.; Huang, W.; Zhang, L. R.; Zhao, J.; Fan, Q. L.; Huang, W. Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 24592-24597.

8

Chen, Z. P.; Ren, W. C.; Gao, L.; Liu, B. L.; Pei, S. F.; Cheng, H. -M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.

9

Engels, S.; Weber, P.; Terrés, B.; Dauber, J.; Meyer, C.; Volk, C.; Trellenkamp, S.; Wichmann, U.; Stampfer, C. Fabrication of coupled graphene-nanotube quantum devices. Nanotechnology 2013, 24, 035204.

10

Ding, Y. -L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1112-1119.

11

Du, F.; Yu, D. S.; Dai, L. M.; Ganguli, S.; Varshney, V.; Roy, A. K. Preparation of tunable 3D pillared carbon nanotube- graphene networks for high-performance capacitance. Chem. Mater. 2011, 23, 4810-4816.

12

Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548-7556.

13

Sun, Y. M.; Fang, Z.; Wang, C. X.; Zhou, A. J.; Duan, H. W. Incorporating nanoporous polyaniline into layer-by-layer ionic liquid-carbon nanotube-graphene paper: Towards freestanding flexible electrodes with improved supercapacitive performance. Nanotechnology 2015, 26, 374002.

14

Deng, Y. H.; Liu, C.; Yu, T.; Liu, F.; Zhang, F. Q.; Wan, Y.; Zhang, L. J.; Wang, C. C.; Tu, B.; Webley, P. A. et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem. Mater. 2007, 19, 3271-3277.

15

Feng, D.; Lv, Y. Y.; Wu, Z. X.; Dou, Y. Q.; Han, L.; Sun, Z. K.; Xia, Y. Y.; Zheng, G. F.; Zhao, D. Y. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J. Am. Chem. Soc. 2011, 133, 15148-15156.

16

Liang, H. -W.; Wei, W.; Wu, Z. -S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002-16005.

17

Kong, A. G.; Zhu, X. F.; Han, Z.; Yu, Y. Y.; Zhang, Y. B.; Dong, B.; Shan, Y. K. Ordered hierarchically micro- and mesoporous Fe-Nx-embedded graphitic architectures as efficient electrocatalysts for oxygen reduction reaction. ACS Catal. 2014, 4, 1793-1800.

18

Liu, X. B.; Amiinu, I. S.; Liu, S. J.; Cheng, K.; Mu, S. C. Transition metal/nitrogen dual-doped mesoporous graphene- like carbon nanosheets for the oxygen reduction and evolution reactions. Nanoscale 2016, 8, 13311-13320.

19

Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723-3728.

20

Peng, H. -J.; Huang, J. -Q.; Zhao, M. -Q.; Zhang, Q.; Cheng, X. -B.; Liu, X. -Y.; Qian, W. -Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium- sulfur batteries. Adv. Funct. Mater. 2014, 24, 2772-2781.

21

Ferrero, G. A.; Preuss, K.; Marinovic, A.; Jorge, A. B.; Mansor, N.; Brett, D. J. L.; Fuertes, A. B.; Sevilla, M.; Titirici, M. -M. Fe-N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano 2016, 10, 5922-5932.

22

Sun, L.; Kong, W. B.; Jiang, Y.; Wu, H. C.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Super-aligned carbon nanotube/ graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. J. Mater. Chem. A 2015, 3, 5305-5312.

23

He, J. R.; Chen, Y. F.; Li, P. J.; Fu, F.; Wang, Z. G.; Zhang, W. L. Three-dimensional CNT/graphene-sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 18605- 18610.

24

Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three- dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666-1675.

25

Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837-1866.

26

Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R. G.; Cho, J.; Wang, H. -L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Adv. Mater. 2014, 26, 1378-1386.

27

Wu, Z. -Y.; Liang, H. -W.; Chen, L. -F.; Hu, B. -C.; Yu, S. -H. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 2016, 49, 96-105.

28

Lv, R. T.; Cruz-Silva, E.; Terrones, M. Building complex hybrid carbon architectures by covalent interconnections: Graphene-nanotube hybrids and more. ACS Nano 2014, 8, 4061-4069.

29

Kim, N. D.; Li, Y. L.; Wang, G.; Fan, X. J.; Jiang, J. L.; Li, L.; Ji, Y.; Ruan, G. D.; Hauge, R. H.; Tour, J. M. Growth and transfer of seamless 3D graphene-nanotube hybrids. Nano Lett. 2016, 16, 1287-1292.

30

Yan, Z.; Ma, L. L.; Zhu, Y.; Lahiri, I.; Hahm, M. G.; Liu, Z.; Yang, S. B.; Xiang, C. S.; Lu, W.; Peng, Z. W. et al. Three-dimensional metal-graphene-nanotube multifunctional hybrid materials. ACS Nano 2013, 7, 58-64.

31

Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72-78.

32

Zhu, Y.; Li, L.; Zhang, C. G.; Casillas, G.; Sun, Z. Z.; Yan, Z.; Ruan, G. D.; Peng, Z. W.; Raji, A. -R. O.; Kittrell, C. et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 2012, 3, 1225.

33

Chen, R. J.; Zhao, T.; Lu, J.; Wu, F.; Li, L.; Chen, J. Z.; Tan, G. Q.; Ye, Y. S.; Amine, K. Graphene-based three- dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 2013, 13, 4642-4649.

34

Kim, H. -J.; Randriamahazaka, H.; Oh, I. -K. Highly conductive, capacitive, flexible and soft electrodes based on a 3D graphene-nanotube-palladium hybrid and conducting polymer. Small 2014, 10, 5023-5029.

35

Novaes, F. D.; Rurali, R.; Ordejón, P. Electronic transport between graphene layers covalently connected by carbon nanotubes. ACS Nano 2010, 4, 7596-7602.

36

Su, D. F.; Wang, J.; Jin, H. Y.; Gong, Y. D.; Li, M. M.; Pang, Z. F.; Wang, Y. From "waste to gold": A one-pot method to synthesize ultrafinely dispersed Fe2O3-based nanoparticles on N-doped carbon for synergistic and efficient water splitting. J. Mater. Chem. A 2015, 3, 11756-11761.

37

Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688-2694.

38

Wang, J.; Wei, Z. Z.; Gong, Y. T.; Wang, S. P.; Su, D. F.; Han, C. L.; Li, H. R.; Wang, Y. Ni-promoted synthesis of graphitic carbon nanotubes from in situ produced graphitic carbon for dehydrogenation of ethylbenzene. Chem. Commun. 2015, 51, 12859-12862.

39

Liu, J.; Sun, X. J.; Song, P.; Zhang, Y. W.; Xing, W.; Xu, W. L. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron. Adv. Mater. 2013, 25, 6879-6883.

40

Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436-1439.

41

Li, Z. L.; Li, G. L.; Jiang, L. H.; Li, J. L.; Sun, G. Q.; Xia, C. G.; Li, F. W. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2015, 54, 1494-1498.

42

Zhao, D.; Shui, J. -L.; Grabstanowicz, L. R.; Chen, C.; Commet, S. M.; Xu, T.; Lu, J.; Liu, D. -J. Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks. Adv. Mater. 2014, 26, 1093-1097.

43

Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362-1364.

44

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371-375.

45

Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D. -W.; Su, D. S. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 10673-10677.

46

Goellner, V.; Baldizzone, C.; Schuppert, A.; Sougrati, M. T.; Mayrhofer, K.; Jaouen, F. Degradation of Fe/N/C catalysts upon high polarization in acid medium. Phys. Chem. Chem. Phys. 2014, 16, 18454-18462.

47

Andres, H.; Bominaar, E. L.; Smith, J. M.; Eckert, N. A.; Holland, P. L.; Münck, E. Planar three-coordinate high-spin Fe complexes with large orbital angular momentum: Mössbauer, electron paramagnetic resonance, and electronic structure studies. J. Am. Chem. Soc. 2002, 124, 3012-3025.

48

Shui, J. L.; Chen, C.; Grabstanowicz, L.; Zhao, D.; Liu, D. -J. Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. USA 2015, 112, 10629-10634.

49

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High- performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443-447.

Nano Research
Pages 1258-1267
Cite this article:
Bao X, Gong Y, Deng J, et al. Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. Nano Research, 2017, 10(4): 1258-1267. https://doi.org/10.1007/s12274-016-1374-5
Part of a topical collection:

718

Views

29

Crossref

N/A

Web of Science

26

Scopus

3

CSCD

Altmetrics

Received: 01 October 2016
Revised: 03 November 2016
Accepted: 14 November 2016
Published: 27 December 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return