AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment

Anna Lagunas1,2( )Iro Tsintzou2Yolanda Vida3,4Daniel Collado3,4Ezequiel Pérez-Inestrosa3,4Cristina Rodríguez Pereira5Joana Magalhaes1,5José A. Andrades6,1Josep Samitier2,1,7
Networking Biomedical Research Center (CIBER)C/ Monforte de Lemos 3-5Pabellón 11 Planta 0Madrid28029Spain
Institute for Bioengineering of Catalonia (IBEC)Baldiri-Reixac 10-12Barcelona08028Spain
Instituto de Investigación Biomédica de Málaga (IBIMA)Department of Organic ChemistryUniversidad de Málaga (UMA)Málaga29071Spain
Andalusian Centre for Nanomedicine and Biotechnology-BIONANDParque Tecnológico de AndalucíaMálaga29590Spain
Unidad de Bioingeniería Tisular y Terapia Celular (GBTTC-CHUAC)Grupo de ReumatologíaInstituto de Investigación Biomédica de A Coruña (INIBIC)Complexo Hospitalario Universitario de A Coruña (CHUAC)Sergas, Universidade da Coruña (UDC), As Xubias, 84Coruña15006Spain
Cell BiologyGenetics and Physiology DepartmentUniversity de Málaga (UMA)Campus TeatinosMálaga29071Spain
Department of Engineering ElectronicsUniversity of Barcelona (UB)Martí i Franquès 1-11Barcelona08028Spain
Show Author Information

Graphical Abstract

Abstract

Arginine-glycine-aspartic acid (RGD) dendrimer-based nanopatterns on poly(L-lactic acid) were used as bioactive substrates to evaluate the impact of the RGD local surface density on the chondrogenic induction of adult human mesenchymal stem cells. During chondrogenic commitment, active extracellular matrix (ECM) remodeling takes place, playing an instructive role in the differentiation process. Although three-dimensional environments such as pellet or micromass cultures are commonly used for in vitro chondrogenic differentiation, these cultures are rather limited with respect to their ability to interrogate cells in cell–ECM interactions. In the present study, the nanopatterns of the tunable RGD surface density were obtained as a function of the initial dendrimer concentration. The local RGD surface density was quantified through probability contour plots for the minimum interparticle distance, constructed from the corresponding atomic force microscopy images, and correlated with the cell adhesion and differentiation response. The results revealed that the local RGD surface density at the nanoscale acts as a regulator of chondrogenic commitment, and that intermediate adhesiveness of cells to the substrates favors mesenchymal cell condensation and early chondrogenic differentiation.

Electronic Supplementary Material

Download File(s)
nr-10-6-1959_ESM.pdf (1.7 MB)

References

1

Jiang, F.; Hörber, H.; Howard, J.; Müller, D. J. Assembly of collagen into microribbons: Effects of pH and electrolytes. J. Struct. Biol. 2004, 148, 268–278.

2

Smith, M. L.; Gourdon, D.; Little, W. C.; Kubow, K. E.; Eguiluz, R. A.; Luna-Morris, S.; Vogel, V. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 2007, 5, e268.

3

Little, W. C.; Smith, M. L.; Ebneter, U.; Vogel, V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 2008, 27, 451–461.

4

Christman, K. L.; Enriquez-Rios, V. D.; Maynard, H. D. Nanopatterning proteins and peptides. Soft Matter 2006, 2, 928–939.

5

Falconnet, D.; Csucs, G.; Grandin, H. M.; Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006, 27, 3044–3063.

6

Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blümmel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 2004, 5, 383–388.

7

Cavalcanti-Adam, E. A.; Micoulet, A.; Blümmel, J.; Auernheimer, J.; Kessler, H.; Spatz, J. P. Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur. J. Cell. Biol. 2006, 85, 219–224.

8

Arnold, M.; Schwieder, M.; Blümmel, J.; Cavalcanti-Adam, E. A.; López-Garcia, M.; Kessler, H.; Geiger, B.; Spatz, J. P. Cell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter 2009, 5, 72–77.

9

Cavalcanti-Adam, E. A.; Volberg, T.; Micoulet, A.; Kessler, H.; Geiger, B.; Spatz, J. P. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 2007, 92, 2964–2974.

10

Medda, R.; Helth, A.; Herre, P.; Pohl, D.; Rellinghaus, B.; Perschmann, N.; Neubauer, S.; Kessler, H.; Oswald, S.; Eckert, J. et al. Investigation of early cell–surface interactions of human mesenchymal stem cells on nanopatterned β-type titanium-niobium alloy surfaces. Interface Focus 2014, 4, 20130046.

11

Wang, X.; Yan, C.; Ye, K.; He, Y.; Li, Z. H.; Ding, J. D. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 2013, 34, 2865–2874.

12

Wang, X.; Ye, K.; Li, Z. H.; Yan, C.; Ding, J. D. Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings. Organogenesis 2013, 9, 280–286.

13

Li, Z. H.; Cao, B.; Wang, X.; Ye, K.; Li, S. Y.; Ding, J. D. Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells. J. Mater. Chem. B 2015, 3, 5197–5209.

14

Wang, X.; Li, S. Y.; Yan, C.; Liu, P.; Ding, J. D. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett. 2015, 15, 1457–1467.

15

Stephanopoulos, N.; Freeman, R.; North, H. A.; Sur, S.; Jeong, S. J.; Tantakitti, F.; Kessler, J. A.; Stupp, S. I. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett. 2015, 15, 603–609.

16

Rolland, O.; Turrin, C. O.; Caminade, A. M.; Majoral, J. P. Dendrimers and nanomedicine: Multivalency in action. New J. Chem. 2009, 33, 1809–1824.

17

Saovapakhiran, A.; D'Emanuele, A.; Attwood, D.; Penny, J. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug. Chem. 2009, 20, 693–701.

18

Albertazzi, L.; Fernandez-Villamarin, M.; Riguera, R.; Fernandez-Megia, E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjug. Chem. 2012, 23, 1059–1068.

19

Mikhail, A. S.; Jones, K. S.; Sheardown, H. Dendrimer-grafted cell adhesion peptide-modified PDMS. Biotechnol. Prog. 2008, 24, 938–944.

20

Kino-oka, M.; Kim, J.; Kurisaka, K.; Kim, M. H. Preferential growth of skeletal myoblasts and fibroblasts in co-culture on a dendrimer-immobilized surface. J. Biosci. Bioeng. 2013, 115, 96–99.

21

Lomba, M.; Oriol, L.; Sánchez-Somolinos, C.; Grazú, V.; Moros, M.; Serrano, J. L.; Martínez De la Fuente, J. Cell adhesion on surface patterns generated by the photocrosslinking of hyperbranched polyesters with a trisdiazonium salt. React. Funct. Polym. 2013, 73, 499–507.

22

Kim, M. H.; Kino-oka, M.; Morinaga, Y.; Sawada, Y.; Kawase, M.; Yagi, K.; Taya, M. Morphological regulation and aggregate formation of rabbit chondrocytes on dendrimer-immobilized surfaces with D-glucose display. J. Biosci. Bioeng. 2009, 107, 196–205.

23

Kim, M. H.; Kino-oka, M.; Kawase, M.; Yagi, K.; Taya, M. Synergistic effect of D-glucose and epidermal growth factor display on dynamic behaviors of human epithelial cells. J. Biosci. Bioeng. 2007, 104, 428–431.

24

Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A.; Griffith, L. G. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 2000, 113, 1677–1686.

25

Lagunas, A.; Castaño, A. G.; Artés, J. M.; Vida, Y.; Collado, D.; Pérez-Inestrosa, E.; Gorostiza, P.; Claros, S.; Andrades, J. A.; Samitier, J. Large-scale dendrimer-based uneven nanopatterns for the study of local arginine-glycine-aspartic acid (RGD) density effects on cell adhesion. Nano Res. 2014, 7, 399–409.

26

Singh, P.; Schwarzbauer, J. E. Fibronectin and stem cell differentiation—Lessons from chondrogenesis. J. Cell Sci. 2012, 125, 3703–3712.

27

Griffin, M. F.; Butler, P. E.; Seifalian, A. M.; Kalaskar, D. M. Control of stem cell fate by engineering their micro and nanoenvironment. World J. Stem Cells 2015, 7, 37–50.

28

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 13705–13713.

29

Magalhães, J.; Lebourg, M., Deplaine, H.; Gómez-Ribelles, J. L.; Blanco, F. J. Effect of the physicochemical properties of pure or chitosan-coated poly(L-lactic acid) scaffolds on the chondrogenic differentiation of mesenchymal stem cells from osteoarthritic patients. Tissue Eng. Part A 2015, 21, 716–728.

30

Boas, U.; Heegaard, P. M. H. Dendrimers in drug research. Chem. Soc. Rev. 2004, 33, 43–63.

31

Mager, D. M.; LaPointe, V.; Stevens, M. M. Exploring and exploiting chemistry at the cell surface. Nat. Chem. 2011, 3, 582–589.

32

Zelzer, M.; Majani, R.; Bradley, J. W.; Rose, F. R. A. J.; Davies, M. C.; Alexander, M. R. Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials 2008, 29, 172–184.

33

Huang, J. H.; Gräter, S. V.; Corbellini, F.; Rinck, S.; Bock, E.; Kemkemer, R.; Kessler, H.; Ding, J. D.; Spatz, J. P. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009, 9, 1111–1116.

34

Chen, S.; Lewallen, M.; Xie, T. Adhesion in the stem cell niche: Biological roles and regulation. Development 2013, 140, 255–265.

35

Rojas-Ríos, P.; González-Reyes, A. The plasticity of stem cell niches: A general property behind tissue homeostasis and repair. Stem Cells 2014, 32, 852–859.

36

Bobick, B. E.; Chen, F. H.; Le, A. M.; Tuan, R. S. Regulation of the chondrogenic phenotype in culture. Birth Defects Res. C Embryo Today 2009, 87, 351–371.

37

Zhu, Y. B.; Gao, C. Y.; Liu, X. Y.; He, T.; Shen, J. C. Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 2004, 10, 53–61.

38

Takiewicz, W. I.; Seras-Franzoso, J.; García-Fruitós, E.; Vazquez, E.; Ventosa, N.; Peebo, K.; Ratera, I.; Villaverde, A.; Veciana, J. Two-dimensional microscale engineering of protein-based nanoparticles for cell guidance. ACS Nano 2013, 7, 4774–4784.

39

Healy, C.; Uwanogho, D.; Sharpe, P. T. Regulation and role of Sox9 in cartilage formation. Dev. Dyn. 1999, 215, 69–78.

40

Kumar, D.; Lassar, A. B. The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization. Mol. Cell. Biol. 2009, 29, 4262–4273.

41

Bang, O. S.; Kim, E. J.; Chung, J. G.; Lee, S. R.; Park, T. K.; Kang, S. S. Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage con­densation of chick mesenchymal cells. Biochem. Biophys. Res. Commun. 2000, 278, 522–529.

42

DeLise, A. M.; Fisher, L.; Tuan, R. S. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 2000, 8, 309–334.

43

Palecek, S. P.; Loftus, J. C.; Ginsberg, M. H.; Lauffenburger, D. A.; Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 1997, 385, 537–540.

44

Woods, A.; Wang, G. Y.; Beier, F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J. Biol. Chem. 2005, 280, 11626–11634.

45

Kosher, R. A.; Kulyk, W. M.; Gay, S. W. Collagen gene expression during limb cartilage differentiation. J. Cell Biol. 1986, 102, 1151–1156.

46

Lim, Y. B.; Kang, S. S.; Park, T. K.; Lee, Y. S.; Chun, J. S.; Sonn, J. K. Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase C-α signaling. Biochem. Biophys. Res. Commun. 2000, 273, 609–613.

47

Lim, Y. B.; Kang, S. S.; An, W. G.; Lee, Y. S.; Chun, J. S.; Sonn, J. K. Chondrogenesis induced by actin cytoskeleton disruption is regulated via protein kinase C-dependent p38 mitogen-activated protein kinase signaling. J. Cell. Biochem. 2003, 88, 713–718.

48

Murphy-Ulrich, J. E. The de-adhesive activity of matricellular proteins: Is intermediate cell adhesion an adaptive state? J. Clin. Invest. 2001, 107, 785–790.

49

Bi, W. M.; Huang, W. D.; Whitworth, D. J.; Deng, J. M.; Zhang, Z. P.; Behringer, R. R.; de Crombrugghe, B. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc. Natl. Acad. Sci. USA 2001, 98, 6698–6703.

50

Chen, S.; Fu, P. L.; Cong, R. J.; Wu, H. S.; Pei, M. Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis. 2015, 2, 76–95.

51

Chen, W. -H.; Lai, M. -T.; Wu, A. T. H.; Wu, C. -C.; Gelovani, J. G.; Lin, C. -T.; Hung, S. -C.; Chiu, W. -T.; Deng, W. -P. In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes Arthritis Rheum. 2009, 60, 450–459.

Nano Research
Pages 1959-1971
Cite this article:
Lagunas A, Tsintzou I, Vida Y, et al. Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment. Nano Research, 2017, 10(6): 1959-1971. https://doi.org/10.1007/s12274-016-1382-5

717

Views

17

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 14 June 2016
Revised: 17 November 2016
Accepted: 21 November 2016
Published: 29 December 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return