Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries

Jiantie Xu1,3,§In-Yup Jeon2,§Jianmin Ma1Yuhai Dou1Seok-Jin Kim2Jeong-Min Seo2Huakun Liu1Shixue Dou1()Jong-Beom Baek2()Liming Dai3()
Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong, NSW2522Australia
School of Energy and Chemical Engineering/Low-Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST), UNIST-gil 50Ulsan689-897Republic of Korea
Department of Macromolecular Science and EngineeringCase Western Reserve UniversityCleveland, OH44106USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Phosphorus has recently received extensive attention as a promising anode for lithium ion batteries (LIBs) due to its high theoretical capacity of 2, 596 mAh·g-1. To develop high-performance phosphorus anodes for LIBs, carbon materials have been hybridized with phosphorus (P-C) to improve dispersion and conductivity. However, the specific capacity, rate capability, and cycling stability of P-C anodes are still less than satisfactory for practical applications. Furthermore, the exact effects of the carbon support on the electrochemical performance of the P-C anodes are not fully understood. Herein, a series of xP-yC anode materials for LIBs were prepared by a simple and efficient ball-milling method. 6P-4C and 3P-7C were found to be optimum mass ratios of x/y, and delivered initial discharge capacities of 1, 803.5 and 1, 585.3·mAh·g-1, respectively, at 0.1 C in the voltage range 0.02-2 V, with an initial capacity retention of 68.3% over 200 cycles (more than 4 months cycling life) and 40.8% over 450 cycles. The excellent electrochemical performance of the 6P-4C and 3P-7C samples was attributed to a synergistic effect from both the adsorbed P and carbon.

Electronic Supplementary Material

Download File(s)
nr-10-4-1268_ESM.pdf (5.9 MB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

2

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

3

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.

4

Xu, J. T.; Dou, S. X.; Liu, H. K.; Dai, L. M. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2, 439-442.

5

Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939-954.

6

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682-2699.

7

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

8

Ma, D. -L.; Cao, Z. -Y.; Wang, H. -G.; Huang, X. -L.; Wang, L. -M.; Zhang, X. -B. Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 2012, 5, 8538-8542.

9

Huang, Y.; Huang, X. -L.; Lian, J. -S.; Xu, D.; Wang, L. -M.; Zhang, X. -B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844-2847.

10

Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465-2468.

11

Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13, 346-349.

12

Park, M. -S.; Kim, J. -H.; Jo, Y. -N.; Oh, S. -H.; Kim, H.; Kim, Y. -J. Incorporation of phosphorus into the surface of natural graphite anode for lithium ion batteries. J. Mater. Chem. 2011, 21, 17960-17966.

13

Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.

14

Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034-9037.

15

Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932-4937.

16

Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 2014, 78, 455-462.

17

Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1, 580-589.

18

Ma, X. L.; Ning, G. Q.; Qi, C. L.; Xu, C. G.; Gao, J. S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 14415-14422.

19

Sun, J.; Zheng, G. Y.; Lee, H. -W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573-4580.

20

Li, W. F.; Yang, Y. M.; Zhang, G.; Zhang, Y. -W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015, 15, 1691-1697.

21

Yu, Z. X.; Song, J. X.; Gordin, M. L.; Yi, R.; Tang, D. H.; Wang, D. H. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2015, 2, 1400020.

22

Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045-3049.

23

Li, W. -J.; Chou, S. -L.; Wang, J. -Z.; Liu, H. -K.; Dou, S. -X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480-5484.

24

Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 125, 4731-4734.

25

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329-6335.

26

Sun, J.; Lee, H. -W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980-985.

27

Katayama, Y.; Mizutani, T.; Utsumi, W.; Shimomura, O.; Yamakata, M.; Funakoshi, K. -I. A first-order liquid-liquid phase transition in phosphorus. Nature 2000, 403, 170-173.

28

Chou, T. -D.; Lee, T. -W.; Chen, S. -L.; Tung, Y. -M.; Dai, N. -T.; Chen, S. -G.; Lee, C. -H.; Chen, T. -M.; Wang, H. -J. The management of white phosphorus burns. Burns 2001, 27, 492-497.

29

Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M. Phosphorus- carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2015, 3, 5572-5584.

30

McAllister, M. J.; Li, J. -L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396-4404.

31

Xu, J. T.; Shui, J. L.; Wang, J. L.; Wang, M.; Liu, H. -K.; Dou, S. X.; Jeon, I. -Y.; Seo, J. -M.; Baek, J. -B.; Dai, L. M. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 10920-10930.

32

Xu, J. T.; Jeon, I. -Y.; Seo, J. -M.; Dou, S. X.; Dai, L. M.; Baek, J. -B. Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. Adv. Mater. 2014, 26, 7317-7323.

33

Jeon, I. -Y.; Shin, Y. -R.; Sohn, G. -J.; Choi, H. -J.; Bae, S. -Y.; Mahmood, J.; Jung, S. -M.; Seo, J. -M.; Kim, M. -J.; Chang, D. W. et al. Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. USA 2012, 109, 5588-5593.

34

Jeon, I. Y.; Zhang, S.; Zhang, L. P.; Choi, H. J.; Seo, J. M.; Xia, Z. H.; Dai, L. M.; Baek, J. B. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv. Mater. 2013, 25, 6138-6145.

35

Kim, M. -J.; Jeon, I. -Y.; Seo, J. -M.; Dai, L. M.; Baek, J. -B. Graphene phosphonic acid as an efficient flame retardant. ACS Nano 2014, 8, 2820-2825.

36

Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67-86.

Nano Research
Pages 1268-1281
Cite this article:
Xu J, Jeon I-Y, Ma J, et al. Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Research, 2017, 10(4): 1268-1281. https://doi.org/10.1007/s12274-016-1383-4
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return