AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Significantly enhanced optoelectronic performance of tungsten diselenide phototransistor via surface functionalization

Bo Lei1,2,§Zehua Hu1,2,§Du Xiang2,3Junyong Wang1,2Goki Eda1,2,3Cheng Han2,3,4( )Wei Chen1,2,3,4,5( )
Department of PhysicsNational University of SingaporeSingapore117542Singapore
Centre for Advanced 2D Materials and Graphene Research CentreNational University of SingaporeSingapore117546Singapore
Department of ChemistryNational University of SingaporeSingapore117543Singapore
SZU-NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyShenzhen UniversityShenzhen518060China
National University of Singapore (Suzhou) Research Institute377 Lin Quan Street, Suzhou Industrial ParkSuzhou215123China

§ These authors contributed equally to these work.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have attracted enormous research interests and efforts towards the development of versatile electronic and optical devices, owing to their extraordinary and unique fundamental properties and remarkable prospects in nanoelectronic applications. Among the TMDs, tungsten diselenide (WSe2) exhibits tunable ambipolar transport characteristics and superior optical properties such as high quantum efficiency. Herein, we demonstrate significant enhancement in the device performance of WSe2 phototransistor by in situ surface functionalization with cesium carbonate (Cs2CO3). WSe2 was found to be strongly doped with electrons after Cs2CO3 modification. The electron mobility of WSe2 increased by almost one order of magnitude after surface functionalization with 1.6-nm-thick Cs2CO3 decoration. Furthermore, the photocurrent of the WSe2-based phototransistor increased by nearly three orders of magnitude with the deposition of 1.6-nm-thick Cs2CO3. Characterizations by in situ photoelectron spectroscopy techniques confirmed the significant surface charge transfer occurring at the Cs2CO3/WSe2 interface. Our findings coupled with the tunable nature of the surface transfer doping method establish WSe2 as a promising candidate for future 2D materials- based optoelectronic devices.

Electronic Supplementary Material

Download File(s)
nr-10-4-1282_ESM.pdf (692 KB)

References

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

2

Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.

3

Xu, Y.; Cheng, C.; Du, S. C.; Yang, J. Y.; Yu, B.; Luo, J.; Yin, W. Y.; Li, E. P.; Dong, S. R.; Ye, P. D. et al. Contacts between two- and three-dimensional materials: Ohmic, schottky, and p-n heterojunctions. ACS Nano 2016, 10, 4895-4919.

4

Song, X. F.; Hu, J. L.; Zeng, H. B. Two-dimensional semiconductors: Recent progress and future perspectives. J. Mater. Chem. C 2013, 1, 2952-2969.

5

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757-2785.

6

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.

7

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

8

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.

9

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

10

Allain, A.; Kis, A. Electron and hole mobilities in single- layer WSe2. ACS Nano 2014, 8, 7180-7185.

11

Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P. -H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791-797.

12

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

13

Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high- performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983-1990.

14

Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653-8661.

15

Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y. Carrier type control of WSe2 field- effect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 2016, 26, 4223-4230.

16

Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42-46.

17

Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262-267.

18

Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. -A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced Trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323-5329.

19

Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X. A.; Hu, W. P.; Özyilmaz, B.; Neto, A. H. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.

20

Han, C.; Lin, J. D.; Xiang, D.; Wang, C. C.; Wang, L.; Chen, W. Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: An in-situ field effect transistor study. Appl. Phys. Lett. 2013, 103, 263117.

21

Wang, S. F.; Zhao, W. J.; Giustiniano, F.; Eda, G. Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. Phys. Chem. Chem. Phys. 2016, 18, 4304-4309.

22

Li, G.; Chu, C. W.; Shrotriya, V.; Huang, J.; Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 2006, 88, 253503.

23

Wu, C. -I.; Lin, C. -T.; Chen, Y. -H.; Chen, M. -H.; Lu, Y. -J.; Wu, C. -C. Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices. Appl. Phys. Lett. 2006, 88, 152104.

24

Huang, J.; Xu, Z.; Yang, Y. Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. Adv. Funct. Mater. 2007, 17, 1966-1973.

25

Vaynzof, Y.; Kabra, D.; Chua, L. L.; Friend, R. H. Improved electron injection in poly(9, 9'-dioctylfluorene)- co-benzothiodiazole via cesium carbonate by means of coannealing. Appl. Phys. Lett. 2011, 98, 113306.

26

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268-272.

27

Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853-6860.

28

Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991-1995.

29

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.

30

Chen, C. -H.; Wu, C. -L.; Pu, J.; Chiu, M. -H.; Kumar, P.; Takenobu, T.; Li, L. -J. Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration. 2D Mater. 2014, 1, 034001.

31

Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824-4831.

32

Kang, D. -H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. -S.; Jang, Y. H.; Lee, S.; Park, J. -H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099-1107.

33

Kang, D. -H.; Kim, M. -S.; Shim, J.; Jeon, J.; Park, H. -Y.; Jung, W. -S.; Yu, H. -Y.; Pang, C. -H.; Lee, S.; Park, J. -H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.

34

Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974-1981.

35

Huang, J. -K.; Pu, J.; Hsu, C. -L.; Chiu, M. -H.; Juang, Z. -Y.; Chang, Y. -H.; Chang, W. -H.; Iwasa, Y.; Takenobu, T.; Li, L. -J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923-930.

36

Liu, H. S.; Han, N. N.; Zhao, J. J. Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: From structures to electronic properties. RSC Adv. 2015, 5, 17572-17581.

Nano Research
Pages 1282-1291
Cite this article:
Lei B, Hu Z, Xiang D, et al. Significantly enhanced optoelectronic performance of tungsten diselenide phototransistor via surface functionalization. Nano Research, 2017, 10(4): 1282-1291. https://doi.org/10.1007/s12274-016-1386-1
Part of a topical collection:

890

Views

31

Crossref

N/A

Web of Science

28

Scopus

5

CSCD

Altmetrics

Received: 07 October 2016
Revised: 20 November 2016
Accepted: 21 November 2016
Published: 06 January 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return