Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Stretchable and conformal humidity sensors that can be attached to the human body for continuously monitoring the humidity of the environment around the human body or the moisture level of the human skin can play an important role in electronic skin and personal healthcare applications. However, most stretchable humidity sensors are based on the geometric engineering of non-stretchable components and only a few detailed studies are available on stretchable humidity sensors under applied mechanical deformations. In this paper, we propose a transparent, stretchable humidity sensor with a simple fabrication process, having intrinsically stretchable components that provide high stretchability, sensitivity, and stability along with fast response and relaxation time. Composed of reduced graphene oxide-polyurethane composites and an elastomeric conductive electrode, this device exhibits impressive response and relaxation time as fast as 3.5 and 7 s, respectively. The responsivity and the response and relaxation time of the device in the presence of humidity remain almost unchanged under stretching up to a strain of 60% and after 10, 000 stretching cycles at a 40% strain. Further, these stretchable humidity sensors can be easily and conformally attached to a finger for monitoring the humidity levels of the environment around the human body, wet objects, or human skin.
Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.
Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P. L.; Crosby, J. R.; Meyer, M. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 2015, 14, 728–736.
Choong, C. -L.; Shim, M. -B.; Lee, B. -S.; Jeon, S.; Ko, D. -S.; Kang, T. -H.; Bae, J.; Lee, S. H.; Byun, K. -E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.
Dagdeviren, C.; Su, Y. W.; Joe, P.; Yona, R.; Liu, Y. H.; Kim, Y. -S.; Huang, Y. A.; Damadoran, A. R.; Xia, J.; Martin, L. W. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496.
Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y. H.; Yu, K. J.; Cheng, H. Y.; Shi, M. X.; Bian, Z. G.; Liu, Z. J.; Kim, Y. -S. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944.
Gao, L.; Zhang, Y. H.; Malyarchuk, V.; Jia, L.; Jang, K. -I.; Chad Webb, R.; Fu, H. R.; Shi, Y.; Zhou, G. Y.; Shi, L. K. et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 2014, 5, 4938.
Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.
Roh, E.; Hwang, B. -U.; Kim, D.; Kim, B. -Y.; Lee, N. -E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261.
Hwang, B. -U.; Lee, J. -H.; Trung, T. Q.; Roh, E.; Kim, D. -I.; Kim, S. -W.; Lee, N. -E. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 2015, 9, 8801–8810.
Lee, S. -K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho, J. H.; Ahn, J. -H. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 2011, 11, 4642–4646.
Hattori, Y.; Falgout, L.; Lee, W.; Jung, S. -Y.; Poon, E.; Lee, J. W.; Na, I.; Geisler, A.; Sadhwani, D.; Zhang, Y. H. et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv. Healthc. Mater. 2014, 3, 1597–1607.
Trung, T. Q.; Ramasundaram, S.; Hwang, B. -U.; Lee, N. -E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2016, 28, 502–509.
Trung, T. Q.; Lee, N. -E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 2016, 28, 4338–4372.
Kao, K. -W. A.; Cheng, C. -J.; Gwo, S.; Yeh, J. A. A semiconductor gas system of healthcare for liver disease detection using ultrathin InN-based sensor. ECS Trans. 2015, 66, 151–157.
Lorwongtragool, P.; Sowade, E.; Watthanawisuth, N.; Baumann, R. R.; Kerdcharoen, T. A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 2014, 14, 19700–19712.
McColl, D.; Cartlidge, B.; Connolly, P. Real-time monitoring of moisture levels in wound dressings in vitro: An experimental study. Int. J. Surg. 2007, 5, 316–322.
Milne, S. D.; Seoudi, I.; Al Hamad, H.; Talal, T. K.; Anoop, A. A.; Allahverdi, N.; Zakaria, Z.; Menzies, R.; Connolly, P. A wearable wound moisture sensor as an indicator for wound dressing change: An observational study of wound moisture and status. Int. Wound J. 2016, 13, 1309–1314.
Mehmood, N.; Hariz, A.; Templeton, S.; Voelcker, N. H. A flexible and low power telemetric sensing and monitoring system for chronic wound diagnostics. Biomed. Eng. Online 2015, 14, 17.
Ho, D. H.; Sun, Q. J.; Kim, S. Y.; Han, J. T.; Kim, D. H.; Cho, J. H. Stretchable and multimodal all graphene electronic skin. Adv. Mater. 2016, 28, 2601–2608.
Ryu, H.; Cho, S. J.; Kim, B.; Lim, G. A stretchable humidity sensor based on a wrinkled polyaniline nanostructure. RSC Adv. 2014, 4, 39767–39770.
Kim, S. Y.; Park, S.; Park, H. W.; Park, D. H.; Jeong, Y.; Kim, D. H. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 2015, 27, 4178–4185.
Smith, A. D.; Elgammal, K.; Niklaus, F.; Delin, A.; Fischer, A. C.; Vaziri, S.; Forsberg, F.; Rasander, M.; Hugosson, H.; Bergqvist, L. et al. Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 2015, 7, 19099–19109.
Chen, M. -C.; Hsu, C. -L.; Hsueh, T. -J. Fabrication of humidity sensor based on bilayer graphene. IEEE Electron Device Lett. 2014, 35, 590–592.
Ben Aziza, Z.; Zhang, K.; Baillargeat, D.; Zhang, Q. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Appl. Phys. Lett. 2015, 107, 134102.
Hwang, S. -H.; Kang, D.; Ruoff, R. S.; Shin, H. S.; Park, Y. -B. Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano 2014, 8, 6739–6747.
Bi, H. C.; Yin, K. B.; Xie, X.; Ji, J.; Wan, S.; Sun, L. T.; Terrones, M.; Dresselhaus, M. S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714.
Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166–11173.
Yu, H. -W.; Kim, H. K.; Kim, T.; Bae, K. M.; Seo, S. M.; Kim, J. -M.; Kang, T. J.; Kim, Y. H. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly(sodium 4-styrenesulfonate). ACS Appl. Mater. Interfaces 2014, 6, 8320–8326.
Guo, L.; Jiang, H. -B.; Shao, R. -Q.; Zhang, Y. -L.; Xie, S. -Y.; Wang, J. -N.; Li, X. -B.; Jiang, F.; Chen, Q. -D.; Zhang, T. et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 2012, 50, 1667–1673.
Zhang, D. Z.; Tong, J.; Xia, B. K. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B 2014, 197, 66–72.
Li, Y.; Deng, C.; Yang, M. J. Facilely prepared composites of polyelectrolytes and graphene as the sensing materials for the detection of very low humidity. Sens. Actuators B 2014, 194, 51–58.
Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071.
Cheng, B. C.; Tian, B. X.; Xie, C. C.; Xiao, Y. H.; Lei, S. J. Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes. J. Mater. Chem. 2011, 21, 1907–1912.
Wang, X. F.; Ding, B.; Yu, J. Y.; Wang, M. R. Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. J. Mater. Chem. 2011, 21, 16231–16238.
Naik, G.; Krishnaswamy, S. Room-temperature humidity sensing using graphene oxide thin films. Graphene 2016, 5, 1–13.
Yao, Y.; Chen, X. D.; Guo, H. H.; Wu, Z. Q.; Li, X. Y. Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure. Sens. Actuators B 2012, 161, 1053–1058.
Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019.
Sheka, E. F.; Popova, N. A. Molecular theory of graphene oxide. Phys. Chem. Chem. Phys. 2013, 15, 13304–13322.
Trung, T. Q.; Tien, N. T.; Kim, D.; Jung, J. H.; Yoon, O. J.; Lee, N. -E. High thermal responsiveness of a reduced graphene oxide field-effect transistor. Adv. Mater. 2012, 24, 5254–5260.
Trung, T. Q.; Ramasundaram, S.; Hong, S. W.; Lee, N. -E. Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor. Adv. Funct. Mater. 2014, 24, 3438–3445.