Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties

Jintao ZhangLe Yu()Xiong Wen (David) Lou()
School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The construction of metal sulfides-carbon nanocomposites with a hollow structure is highly attractive for various energy storage and conversion technologies. Herein, we report a facile two-step method for preparing a nanocomposite with CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks (NCNTFs). Starting from zeolitic imidazolate framework-67 (ZIF-67) particles, in situ reduced metallic cobalt nanocrystals expedite the formation of the hierarchical hollow frameworks from staggered carbon nanotubes via a carbonization process. After a follow-up sulfidation reaction with sulfur powder, the embedded cobalt crystals are transformed into CoS2 nanoparticles. Benefitting from the robust hollow frameworks made of N-doped carbon nanotubes and highly active CoS2 ultrafine nanoparticles, this advanced nanocomposite shows greatly enhanced lithium storage properties when evaluated as an electrode for lithium-ion batteries. Impressively, the resultant CoS2/NCNTF material delivers a high specific capacity of ~937 mAh·g–1 at a current density of 1.0 A·g–1 with a cycle life longer than 160 cycles.

Electronic Supplementary Material

Download File(s)
nr-10-12-4298_ESM.pdf (1.8 MB)

References

1

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

2

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

3

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

4

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

5

Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

6

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

7

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

8

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

9

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

10

Yu, X. Y.; Yu, L.; Lou, X. W. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333

11

Shen, L. F.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015, 6, 6694.

12

Yu, L.; Zhang, L.; Wu, H. B.; Lou, X. W. Formation of NixCo3–xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem., Int. Ed. 2014, 53, 3711–3714.

13

Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.

14

Xu, X. D.; Liu, W.; Kim, Y.; Cho, J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today 2014, 9, 604–630.

15

Rui, X. H.; Tan, H. T.; Yan, Q. Y. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924.

16

Su, Q. M.; Xie, J.; Zhang, J.; Zhong, Y. J.; Du, G. H.; Xu, B. S. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 3016–3022.

17

Wang, J.; Liu, J. L.; Chao, D. L.; Yan, J. X.; Lin, J. Y.; Shen, Z. X. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 2014, 26, 7162–7169.

18

Yu, L.; Yang, J. F.; Lou, X. W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem., Int. Ed. 2016, 55, 13422–13426.

19

Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964–969.

20

Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528–537.

21

Ko, Y. N.; Choi, S. H.; Park, S. B.; Kang, Y. C. Preparation of yolk–shell and filled Co9S8 microspheres and comparison of their electrochemical properties. Chem. —Asian J. 2014, 9, 572–576.

22

Wang, Q. H.; Jiao, L. F.; Han, Y.; Du, H. M.; Peng, W. X.; Huan, Q. N.; Song, D. W.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. CoS2 hollow spheres: Fabrication and their application in lithium-ion batteries. J. Phys. Chem. C 2011, 115, 8300–8304.

23

Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 7395–7398.

24

Wu, R. B.; Wang, D. P.; Rui, X. H.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q. Y.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for highperformance lithium-ion batteries. Adv. Mater. 2015, 27, 3038–3044.

25

Liu, J.; Wu, C.; Xiao, D. D.; Kopold, P.; Gu, L.; van Aken, P. A.; Maier, J.; Yu, Y. MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 2016, 12, 2354–2364.

26

Meng, X. B.; He, K.; Su, D.; Zhang, X. F.; Sun, C. J.; Ren, Y.; Wang, H. H.; Weng, W.; Trahey, L.; Canlas, C. P. et al. Gallium sulfide-single-walled carbon nanotube composites: High-performance anodes for lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5435–5442.

27

Peng, S. J.; Li, L. L.; Mhaisalkar, S. G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. Y. Hollow nanospheres constructed by CoS2 nanosheets with a nitrogen-doped-carbon coating for energy-storage and photocatalysis. ChemSusChem 2014, 7, 2212–2220.

28

Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592–1599.

29

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

30

Chen, Y. M.; Li, X. Y.; Park, K.; Song, J.; Hong, J. H.; Zhou, L. M.; Mai, Y. W.; Huang, H. T.; Goodenough, J. B. Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 16280–16283.

31

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

32

Huang, X. K.; Cui, S. M.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Luo, Y. T.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew. Chem., Int. Ed. 2015, 54, 1490–1493.

33

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

34

Jin, R. C.; Zhou, J. H.; Guan, Y. S.; Liu, H.; Chen, G. Mesocrystal Co9S8 hollow sphere anodes for high performance lithium ion batteries. J. Mater. Chem. A 2014, 2, 13241–13244.

35

Qiu, W. D.; Jiao, J. Q.; Xia, J.; Zhong, H. M.; Chen, L. P. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for highperformance lithium-ion batteries. Chem. —Eur. J. 2015, 21, 4359–4367.

36

Jin, R. C.; Yang, L. X.; Li, G. H.; Chen, G. Hierarchical worm-like CoS2 composed of ultrathin nanosheets as an anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 10677–10680.

Nano Research
Pages 4298-4304
Cite this article:
Zhang J, Yu L, Lou XW(. Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Research, 2017, 10(12): 4298-4304. https://doi.org/10.1007/s12274-016-1394-1
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return