AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties

Jintao ZhangLe Yu( )Xiong Wen (David) Lou( )
School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
Show Author Information

Graphical Abstract

Abstract

The construction of metal sulfides-carbon nanocomposites with a hollow structure is highly attractive for various energy storage and conversion technologies. Herein, we report a facile two-step method for preparing a nanocomposite with CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks (NCNTFs). Starting from zeolitic imidazolate framework-67 (ZIF-67) particles, in situ reduced metallic cobalt nanocrystals expedite the formation of the hierarchical hollow frameworks from staggered carbon nanotubes via a carbonization process. After a follow-up sulfidation reaction with sulfur powder, the embedded cobalt crystals are transformed into CoS2 nanoparticles. Benefitting from the robust hollow frameworks made of N-doped carbon nanotubes and highly active CoS2 ultrafine nanoparticles, this advanced nanocomposite shows greatly enhanced lithium storage properties when evaluated as an electrode for lithium-ion batteries. Impressively, the resultant CoS2/NCNTF material delivers a high specific capacity of ~937 mAh·g–1 at a current density of 1.0 A·g–1 with a cycle life longer than 160 cycles.

Electronic Supplementary Material

Download File(s)
nr-10-12-4298_ESM.pdf (1.8 MB)

References

1

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

2

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

3

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

4

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

5

Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

6

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

7

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

8

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

9

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

10

Yu, X. Y.; Yu, L.; Lou, X. W. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333

11

Shen, L. F.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015, 6, 6694.

12

Yu, L.; Zhang, L.; Wu, H. B.; Lou, X. W. Formation of NixCo3–xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem., Int. Ed. 2014, 53, 3711–3714.

13

Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.

14

Xu, X. D.; Liu, W.; Kim, Y.; Cho, J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today 2014, 9, 604–630.

15

Rui, X. H.; Tan, H. T.; Yan, Q. Y. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924.

16

Su, Q. M.; Xie, J.; Zhang, J.; Zhong, Y. J.; Du, G. H.; Xu, B. S. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 3016–3022.

17

Wang, J.; Liu, J. L.; Chao, D. L.; Yan, J. X.; Lin, J. Y.; Shen, Z. X. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 2014, 26, 7162–7169.

18

Yu, L.; Yang, J. F.; Lou, X. W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem., Int. Ed. 2016, 55, 13422–13426.

19

Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964–969.

20

Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528–537.

21

Ko, Y. N.; Choi, S. H.; Park, S. B.; Kang, Y. C. Preparation of yolk–shell and filled Co9S8 microspheres and comparison of their electrochemical properties. Chem. —Asian J. 2014, 9, 572–576.

22

Wang, Q. H.; Jiao, L. F.; Han, Y.; Du, H. M.; Peng, W. X.; Huan, Q. N.; Song, D. W.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. CoS2 hollow spheres: Fabrication and their application in lithium-ion batteries. J. Phys. Chem. C 2011, 115, 8300–8304.

23

Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 7395–7398.

24

Wu, R. B.; Wang, D. P.; Rui, X. H.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q. Y.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for highperformance lithium-ion batteries. Adv. Mater. 2015, 27, 3038–3044.

25

Liu, J.; Wu, C.; Xiao, D. D.; Kopold, P.; Gu, L.; van Aken, P. A.; Maier, J.; Yu, Y. MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 2016, 12, 2354–2364.

26

Meng, X. B.; He, K.; Su, D.; Zhang, X. F.; Sun, C. J.; Ren, Y.; Wang, H. H.; Weng, W.; Trahey, L.; Canlas, C. P. et al. Gallium sulfide-single-walled carbon nanotube composites: High-performance anodes for lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5435–5442.

27

Peng, S. J.; Li, L. L.; Mhaisalkar, S. G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. Y. Hollow nanospheres constructed by CoS2 nanosheets with a nitrogen-doped-carbon coating for energy-storage and photocatalysis. ChemSusChem 2014, 7, 2212–2220.

28

Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592–1599.

29

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

30

Chen, Y. M.; Li, X. Y.; Park, K.; Song, J.; Hong, J. H.; Zhou, L. M.; Mai, Y. W.; Huang, H. T.; Goodenough, J. B. Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 16280–16283.

31

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

32

Huang, X. K.; Cui, S. M.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Luo, Y. T.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew. Chem., Int. Ed. 2015, 54, 1490–1493.

33

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

34

Jin, R. C.; Zhou, J. H.; Guan, Y. S.; Liu, H.; Chen, G. Mesocrystal Co9S8 hollow sphere anodes for high performance lithium ion batteries. J. Mater. Chem. A 2014, 2, 13241–13244.

35

Qiu, W. D.; Jiao, J. Q.; Xia, J.; Zhong, H. M.; Chen, L. P. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for highperformance lithium-ion batteries. Chem. —Eur. J. 2015, 21, 4359–4367.

36

Jin, R. C.; Yang, L. X.; Li, G. H.; Chen, G. Hierarchical worm-like CoS2 composed of ultrathin nanosheets as an anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 10677–10680.

Nano Research
Pages 4298-4304
Cite this article:
Zhang J, Yu L, Lou XW(. Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Research, 2017, 10(12): 4298-4304. https://doi.org/10.1007/s12274-016-1394-1
Part of a topical collection:

919

Views

156

Crossref

N/A

Web of Science

154

Scopus

0

CSCD

Altmetrics

Received: 15 September 2016
Revised: 22 November 2016
Accepted: 28 November 2016
Published: 10 January 2017
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return