AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects

Shuangfei Cai1Xinghang Jia1Qiusen Han1Xiyun Yan2Rong Yang1( )Chen Wang1( )
CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100190China
Key Laboratory of Protein and Peptide PharmaceuticalNational Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
Show Author Information

Graphical Abstract

Abstract

Enhancing the activity of Pt-based nanocatalysts is of great significance yet a challenge for the oxygen reduction reaction (ORR). In this work, a series of porous Pt/Ag nanoparticles (NPs) were fabricated from regular PtxAg100–x (x = 25, 50, 75) octahedra by a facile and economical dealloying process. Remarkable enhancement in multiple enzyme-mimic activities related to ORR was observed for the dealloyed Pt50Ag50 (D-Pt50Ag50) NPs. This effect can be attributed to the resulting Pt-rich surface structure, increased surface area, and a synergistic effect of Pt and Ag atoms in the D-Pt50Ag50 NPs. Furthermore, the D-Pt50Ag50 NPs exerted excellent antibacterial effects on two model bacteria (gram-negative Escherichia coli and gram-positive Staphylococcus aureus). The present work represents a significant advance in the exploration of the relation between controllable synthesis of high-quality nanoalloys and their novel catalytic properties for various promising applications, including catalysts, biosensors, and biomedicine.

Electronic Supplementary Material

Download File(s)
nr-10-6-2056_ESM.pdf (2.8 MB)

References

1

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

2

Cui, C. -H.; Li, H. -H.; Yu, J. -W.; Gao, M. -R.; Yu, S. -H. Ternary heterostructured nanoparticle tubes: A dual catalyst and its synergistic enhancement effects for O2/H2O2 reduction. Angew. Chem., Int. Ed. 2010, 49, 9149–9152.

3

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

4

Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

5

Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.

6

Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 2007, 46, 249–262.

7

Sasaki, K.; Adzic, R. R. Monolayer-level Ru- and NbO2-supported platinum electrocatalysts for methanol oxidation. J. Electrochem. Soc. 2008, 155, B180–B186.

8

Sasaki, K.; Zhang, L.; Adzic, R. R. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys. Chem. Chem. Phys. 2008, 10, 159–167.

9

Stamenkovic, V.; Markovic, N. M.; Ross, P. N., Jr. Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 2001, 500, 44–51.

10

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N., Jr.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

11

Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 2007, 23, 6438–6445.

12

Marković, N. M.; Ross, P. N., Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.

13

Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.

14

Deogratias, N.; Ji, M. W.; Zhang, Y.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Res. 2015, 8, 271–280.

15

Mani, P.; Srivastava, R.; Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources 2011, 196, 666–673.

16

Oezaslan, M.; Strasser, P. Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J. Power Sources 2011, 196, 5240–5249.

17

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

18

Cui, C. H.; Li, H. -H.; Liu, X. -J.; Gao, M. -R.; Yu, S. -H. Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal. 2012, 2, 916–924.

19

Liu, Z. Y.; Xin, H. L.; Yu, Z. Q.; Zhu, Y.; Zhang, J. L.; Mundy, J. A.; Muller, D. A.; Wagner, F. T. Atomic-scale compositional mapping and 3-dimensional electron microscopy of dealloyed PtCo3 catalyst nanoparticles with spongy multi-core/shell structures. J. Electrochem. Soc. 2012, 159, F554–F559.

20

He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494–1497.

21

Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Marković, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.

22

Wang, D. L.; Yu, Y. C.; Xin, H. L.; Hovden, R.; Ercius, P.; Mundy, J. A.; Chen, H.; Richard, J. H.; Muller, D. A.; DiSalvo, F. J. et al. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 2012, 12, 5230–5238.

23

Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.

24

Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

25

Wang, Y.; Wan, D. H.; Xie, S. F.; Xia, X. H.; Huang, C. Z.; Xia, Y. N. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 2013, 7, 4586–4594.

26

Chang, C. -C.; Wu, H. -L.; Kuo, C. -H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem. Mater. 2008, 20, 7570–7574.

27

Zhu, E. B.; Li, Y. J.; Chiu, C. -Y.; Huang, X. Q.; Li, M. F.; Zhao, Z. P.; Liu, Y.; Duan, X. F.; Huang, Y. In situ development of highly concave and composition-confined PtNi octahedral with high oxygen reduction reaction activity and durability. Nano Res. 2016, 9, 149–157.

28

Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.

29

Polarz, S.; Smarsly, B. Nanoporous materials. J. Nanosci. Nanotechnol. 2002, 2, 581–612.

30

Yang, H. C.; Hu, F.; Zhang, Y. J.; Shi, L. Y.; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207–213.

31

Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res. 2015, 8, 576–583.

32

Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. -Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. Adv. Mater. 2013, 25, 2974–2979.

33

Zhou, B. B.; Sun, Z. F.; Li, D.; Zhang, T.; Deng, L.; Liu, Y. -N. Platinum nanostructures via self-assembly of an amyloid-like peptide: A novel electrocatalyst for the oxygen reduction. Nanoscale 2013, 5, 2669–2673.

34

Yuwen, L.; Xu, F.; Xue, B.; Luo, Z. M.; Zhang, Q.; Bao, B. Q.; Su, S.; Weng, L. X.; Huang, W.; Wang, L. H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762–5769.

35

El Mel, A. -A.; Boukli-Hacene, F.; Molina-Luna, L.; Bouts, N.; Chauvin, A.; Thiry, D.; Gautron, E.; Gautier, N.; Tessier, P. -Y. Unusual dealloying effect in gold/copper alloy thin films: The role of defects and column boundaries in the formation of nanoporous gold. ACS Appl. Mater. Interfaces 2015, 7, 2310–2321.

36

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

37

Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.

38

Cai, S. F.; Qi, C.; Li, Y. D.; Han, Q. S.; Yang, R.; Wang, C. PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 2016, 4, 1869–1877.

39

Marković, N. M.; Gasteiger, H. A.; Grgur, B. N.; Ross, P. N. Oxygen reduction reaction on Pt(111): Effects of bromide. J. Electroanal. Chem. 1999, 467, 157–163.

40

Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

41

Cai, L. -T.; Chen, H. -Y. Electrocatalytic reduction of hydrogen peroxide at platinum microparticles dispersed in a poly(o-phenylenediamine) film. Sens. Actuators B 1999, 55, 14–18.

42

Wang, C.; Chi, M. F.; Wang, G. F.; van der Vliet, D.; Li, D. G.; More, K.; Wang, H. -H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1–x nanoparticles. Adv. Funct. Mater. 2011, 21, 147–152.

43

Zhang, L. -N.; Deng, H. -H.; Lin, F. -L.; Xu, X. -W.; Weng, S. -H.; Liu, A. -L.; Lin, X. -H.; Xia, X. -H.; Chen, W. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal. Chem. 2014, 86, 2711–2718.

44

Su, L.; Feng, J.; Zhou, X. M.; Ren, C. L.; Li, H. H.; Chen, X. G. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012, 84, 5753–5758.

45

Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.

46

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

47

Jiao, X.; Song, H. J.; Zhao, H. H.; Bai, W.; Zhang, L. C.; Lv, Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 2012, 4, 3261–3267.

48

Dong, Y. L.; Zhang, H. G.; Rahman, Z. U.; Su, L.; Chen, X. J.; Hu, J.; Chen, X. G. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 2012, 4, 3969–3976.

49

Dong, Y. M.; Zhang, J. J.; Jiang, P. P.; Wang, G. L.; Wu, X. M.; Zhao, H.; Zhang, C. Superior peroxidase mimetic activity of carbon dots-Pt nanocomposites relies on synergistic effects. New J. Chem. 2015, 39, 4141–4146.

50

Park, J. -N.; Shon, J. K.; Jin, M. S.; Hwang, S. H.; Park, G. O.; Boo, J. -H.; Han, T. H.; Kim, J. M. Highly ordered mesoporous α-Mn2O3 for catalytic decomposition of H2O2 at low temperatures. Chem. Lett. 2010, 39, 493–495.

51

Lin, S. -S.; Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol. 1998, 32, 1417–1423.

52

Kiyonaga, T.; Jin, Q. L.; Kobayashi, H.; Tada, H. Size- dependence of catalytic activity of gold nanoparticles loaded on titanium(Ⅳ) dioxide for hydrogen peroxide decomposition. ChemPhysChem 2009, 10, 2935–2938.

53

Fan, J.; Yin, J. -J.; Ning, B.; Wu, X. C.; Hu, Y.; Ferrari, M.; Anderson, G. J.; Wei, J. Y.; Zhao, Y. L.; Nie, G. J. Direct evidence for catalase and peroxidase activities of ferritin- platinum nanoparticles. Biomaterials 2011, 32, 1611–1618.

54

Hasnat, M. A.; Rahman, M. M.; Borhanuddin, S. M.; Siddiqua, A.; Bahadur, N. M.; Karim, M. R. Efficient hydrogen peroxide decomposition on bimetallic Pt-Pd surfaces. Catal. Commun. 2010, 12, 286–291.

55

Prabhuram, J.; Manoharan, R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J. Power Sources 1998, 74, 54–61.

56

Westbroek, P.; Temmerman, E. Mechanism of hydrogen peroxide oxidation reaction at a glassy carbon electrode in alkaline solution. J. Electroanal. Chem. 2000, 482, 40–47.

57

Matsura, V. A.; Potekhin, V. V.; Platonov, V. V.; Tatsenko, O. M.; Ukraintsev, V. B.; Khokhryakov, K. A. Kinetics of reaction between oxygen and hydrogen in water in the presence of Pd(0)-containing compounds. Russ. J. Gen. Chem. 2003, 73, 1671–1675.

58

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

59

Greeley, J.; Nørskov, J. K.; Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 2002, 53, 319–348.

60

Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of Platinum- monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed. 2005, 44, 2132–2135.

61

Lu, Y.; Ye, W. C.; Yang, Q.; Yu, J.; Wang, Q.; Zhou, P. P.; Wang, C. M.; Xue, D. S.; Zhao, S. Q. Three-dimensional hierarchical porous PtCu dendrites: A highly efficient peroxidase nanozyme for colorimetric detection of H2O2. Sens. Actuators B 2016, 230, 721–730.

62

Zhang, H. J.; Deng, X. G.; Jiao, C. P.; Lu, L. L.; Zhang, S. W. Preparation and catalytic activities for H2O2 decomposition of Rh/Au bimetallic nanoparticles. Mater. Res. Bull. 2016, 79, 29–35.

63

Xu, G. -R.; Han, S. -H.; Liu, Z. -H.; Chen, Y. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property. J. Power Sources 2016, 306, 587–592.

64

Fu, G. T.; Jiang, X.; Ding, L. F.; Tao, L.; Chen, Y.; Tang, Y. W.; Zhou, Y. M.; Wei, S. H.; Lin, J.; Lu, T. L. Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Appl. Catal. B: Environ. 2013, 138–139, 167–174.

65

Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

66

Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

Nano Research
Pages 2056-2069
Cite this article:
Cai S, Jia X, Han Q, et al. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Research, 2017, 10(6): 2056-2069. https://doi.org/10.1007/s12274-016-1395-0

929

Views

110

Crossref

N/A

Web of Science

115

Scopus

11

CSCD

Altmetrics

Received: 30 September 2016
Revised: 24 November 2016
Accepted: 28 November 2016
Published: 21 January 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return