Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Enhancing the activity of Pt-based nanocatalysts is of great significance yet a challenge for the oxygen reduction reaction (ORR). In this work, a series of porous Pt/Ag nanoparticles (NPs) were fabricated from regular PtxAg100–x (x = 25, 50, 75) octahedra by a facile and economical dealloying process. Remarkable enhancement in multiple enzyme-mimic activities related to ORR was observed for the dealloyed Pt50Ag50 (D-Pt50Ag50) NPs. This effect can be attributed to the resulting Pt-rich surface structure, increased surface area, and a synergistic effect of Pt and Ag atoms in the D-Pt50Ag50 NPs. Furthermore, the D-Pt50Ag50 NPs exerted excellent antibacterial effects on two model bacteria (gram-negative Escherichia coli and gram-positive Staphylococcus aureus). The present work represents a significant advance in the exploration of the relation between controllable synthesis of high-quality nanoalloys and their novel catalytic properties for various promising applications, including catalysts, biosensors, and biomedicine.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.
Cui, C. -H.; Li, H. -H.; Yu, J. -W.; Gao, M. -R.; Yu, S. -H. Ternary heterostructured nanoparticle tubes: A dual catalyst and its synergistic enhancement effects for O2/H2O2 reduction. Angew. Chem., Int. Ed. 2010, 49, 9149–9152.
Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.
Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.
Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.
Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 2007, 46, 249–262.
Sasaki, K.; Adzic, R. R. Monolayer-level Ru- and NbO2-supported platinum electrocatalysts for methanol oxidation. J. Electrochem. Soc. 2008, 155, B180–B186.
Sasaki, K.; Zhang, L.; Adzic, R. R. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys. Chem. Chem. Phys. 2008, 10, 159–167.
Stamenkovic, V.; Markovic, N. M.; Ross, P. N., Jr. Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 2001, 500, 44–51.
Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N., Jr.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.
Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 2007, 23, 6438–6445.
Marković, N. M.; Ross, P. N., Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.
Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.
Deogratias, N.; Ji, M. W.; Zhang, Y.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Res. 2015, 8, 271–280.
Mani, P.; Srivastava, R.; Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources 2011, 196, 666–673.
Oezaslan, M.; Strasser, P. Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J. Power Sources 2011, 196, 5240–5249.
Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.
Cui, C. H.; Li, H. -H.; Liu, X. -J.; Gao, M. -R.; Yu, S. -H. Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal. 2012, 2, 916–924.
Liu, Z. Y.; Xin, H. L.; Yu, Z. Q.; Zhu, Y.; Zhang, J. L.; Mundy, J. A.; Muller, D. A.; Wagner, F. T. Atomic-scale compositional mapping and 3-dimensional electron microscopy of dealloyed PtCo3 catalyst nanoparticles with spongy multi-core/shell structures. J. Electrochem. Soc. 2012, 159, F554–F559.
He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494–1497.
Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Marković, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.
Wang, D. L.; Yu, Y. C.; Xin, H. L.; Hovden, R.; Ercius, P.; Mundy, J. A.; Chen, H.; Richard, J. H.; Muller, D. A.; DiSalvo, F. J. et al. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 2012, 12, 5230–5238.
Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.
Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.
Wang, Y.; Wan, D. H.; Xie, S. F.; Xia, X. H.; Huang, C. Z.; Xia, Y. N. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 2013, 7, 4586–4594.
Chang, C. -C.; Wu, H. -L.; Kuo, C. -H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem. Mater. 2008, 20, 7570–7574.
Zhu, E. B.; Li, Y. J.; Chiu, C. -Y.; Huang, X. Q.; Li, M. F.; Zhao, Z. P.; Liu, Y.; Duan, X. F.; Huang, Y. In situ development of highly concave and composition-confined PtNi octahedral with high oxygen reduction reaction activity and durability. Nano Res. 2016, 9, 149–157.
Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.
Polarz, S.; Smarsly, B. Nanoporous materials. J. Nanosci. Nanotechnol. 2002, 2, 581–612.
Yang, H. C.; Hu, F.; Zhang, Y. J.; Shi, L. Y.; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207–213.
Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res. 2015, 8, 576–583.
Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. -Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. Adv. Mater. 2013, 25, 2974–2979.
Zhou, B. B.; Sun, Z. F.; Li, D.; Zhang, T.; Deng, L.; Liu, Y. -N. Platinum nanostructures via self-assembly of an amyloid-like peptide: A novel electrocatalyst for the oxygen reduction. Nanoscale 2013, 5, 2669–2673.
Yuwen, L.; Xu, F.; Xue, B.; Luo, Z. M.; Zhang, Q.; Bao, B. Q.; Su, S.; Weng, L. X.; Huang, W.; Wang, L. H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762–5769.
El Mel, A. -A.; Boukli-Hacene, F.; Molina-Luna, L.; Bouts, N.; Chauvin, A.; Thiry, D.; Gautron, E.; Gautier, N.; Tessier, P. -Y. Unusual dealloying effect in gold/copper alloy thin films: The role of defects and column boundaries in the formation of nanoporous gold. ACS Appl. Mater. Interfaces 2015, 7, 2310–2321.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.
Cai, S. F.; Qi, C.; Li, Y. D.; Han, Q. S.; Yang, R.; Wang, C. PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 2016, 4, 1869–1877.
Marković, N. M.; Gasteiger, H. A.; Grgur, B. N.; Ross, P. N. Oxygen reduction reaction on Pt(111): Effects of bromide. J. Electroanal. Chem. 1999, 467, 157–163.
Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.
Cai, L. -T.; Chen, H. -Y. Electrocatalytic reduction of hydrogen peroxide at platinum microparticles dispersed in a poly(o-phenylenediamine) film. Sens. Actuators B 1999, 55, 14–18.
Wang, C.; Chi, M. F.; Wang, G. F.; van der Vliet, D.; Li, D. G.; More, K.; Wang, H. -H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1–x nanoparticles. Adv. Funct. Mater. 2011, 21, 147–152.
Zhang, L. -N.; Deng, H. -H.; Lin, F. -L.; Xu, X. -W.; Weng, S. -H.; Liu, A. -L.; Lin, X. -H.; Xia, X. -H.; Chen, W. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal. Chem. 2014, 86, 2711–2718.
Su, L.; Feng, J.; Zhou, X. M.; Ren, C. L.; Li, H. H.; Chen, X. G. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012, 84, 5753–5758.
Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.
Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.
Jiao, X.; Song, H. J.; Zhao, H. H.; Bai, W.; Zhang, L. C.; Lv, Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 2012, 4, 3261–3267.
Dong, Y. L.; Zhang, H. G.; Rahman, Z. U.; Su, L.; Chen, X. J.; Hu, J.; Chen, X. G. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 2012, 4, 3969–3976.
Dong, Y. M.; Zhang, J. J.; Jiang, P. P.; Wang, G. L.; Wu, X. M.; Zhao, H.; Zhang, C. Superior peroxidase mimetic activity of carbon dots-Pt nanocomposites relies on synergistic effects. New J. Chem. 2015, 39, 4141–4146.
Park, J. -N.; Shon, J. K.; Jin, M. S.; Hwang, S. H.; Park, G. O.; Boo, J. -H.; Han, T. H.; Kim, J. M. Highly ordered mesoporous α-Mn2O3 for catalytic decomposition of H2O2 at low temperatures. Chem. Lett. 2010, 39, 493–495.
Lin, S. -S.; Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol. 1998, 32, 1417–1423.
Kiyonaga, T.; Jin, Q. L.; Kobayashi, H.; Tada, H. Size- dependence of catalytic activity of gold nanoparticles loaded on titanium(Ⅳ) dioxide for hydrogen peroxide decomposition. ChemPhysChem 2009, 10, 2935–2938.
Fan, J.; Yin, J. -J.; Ning, B.; Wu, X. C.; Hu, Y.; Ferrari, M.; Anderson, G. J.; Wei, J. Y.; Zhao, Y. L.; Nie, G. J. Direct evidence for catalase and peroxidase activities of ferritin- platinum nanoparticles. Biomaterials 2011, 32, 1611–1618.
Hasnat, M. A.; Rahman, M. M.; Borhanuddin, S. M.; Siddiqua, A.; Bahadur, N. M.; Karim, M. R. Efficient hydrogen peroxide decomposition on bimetallic Pt-Pd surfaces. Catal. Commun. 2010, 12, 286–291.
Prabhuram, J.; Manoharan, R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J. Power Sources 1998, 74, 54–61.
Westbroek, P.; Temmerman, E. Mechanism of hydrogen peroxide oxidation reaction at a glassy carbon electrode in alkaline solution. J. Electroanal. Chem. 2000, 482, 40–47.
Matsura, V. A.; Potekhin, V. V.; Platonov, V. V.; Tatsenko, O. M.; Ukraintsev, V. B.; Khokhryakov, K. A. Kinetics of reaction between oxygen and hydrogen in water in the presence of Pd(0)-containing compounds. Russ. J. Gen. Chem. 2003, 73, 1671–1675.
Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.
Greeley, J.; Nørskov, J. K.; Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 2002, 53, 319–348.
Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of Platinum- monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed. 2005, 44, 2132–2135.
Lu, Y.; Ye, W. C.; Yang, Q.; Yu, J.; Wang, Q.; Zhou, P. P.; Wang, C. M.; Xue, D. S.; Zhao, S. Q. Three-dimensional hierarchical porous PtCu dendrites: A highly efficient peroxidase nanozyme for colorimetric detection of H2O2. Sens. Actuators B 2016, 230, 721–730.
Zhang, H. J.; Deng, X. G.; Jiao, C. P.; Lu, L. L.; Zhang, S. W. Preparation and catalytic activities for H2O2 decomposition of Rh/Au bimetallic nanoparticles. Mater. Res. Bull. 2016, 79, 29–35.
Xu, G. -R.; Han, S. -H.; Liu, Z. -H.; Chen, Y. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property. J. Power Sources 2016, 306, 587–592.
Fu, G. T.; Jiang, X.; Ding, L. F.; Tao, L.; Chen, Y.; Tang, Y. W.; Zhou, Y. M.; Wei, S. H.; Lin, J.; Lu, T. L. Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Appl. Catal. B: Environ. 2013, 138–139, 167–174.
Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.
Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.