AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence

Rui Zou1,§Junjian Huang1,§Junpeng Shi2Lin Huang1Xuejie Zhang1Ka-Leung Wong3( )Hongwu Zhang2( )Dayong Jin4( )Jing Wang1( )Qiang Su1
Ministry of Education Key Laboratory of Bioinorganic and Synthetic ChemistryState Key Laboratory of Optoelectronic Materials and TechnologiesKLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat-Sen UniversityGuangzhou510275China
Key Lab of Urban Pollutant ConversionInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
Department of ChemistryHong Kong Baptist UniversityHong Kong999077China
Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceUniversity of Technology SydneyNSW2007Australia

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Near-infrared (NIR) persistent-luminescence nanoparticles have emerged as a new class of background-free contrast agents that are promising for in vivo imaging. The next key roadblock is to establish a robust and controllable method for synthesizing monodisperse nanoparticles with high luminescence brightness and long persistent duration. Herein, we report a synthesis strategy involving the coating/etching of the SiO2 shell to obtain a new class of small NIR highly persistent luminescent ZnGa2O4: Cr3+, Sn4+ (ZGOCS) nanoparticles. The optimized ZGOCS nanoparticles have an excellent size distribution of ~15 nm without any agglomeration and an NIR persistent luminescence that is enhanced by a factor of 13.5, owing to the key role of the SiO2 shell in preventing nanoparticle agglomeration after annealing. The ZGOCS nanoparticles have a signal-to-noise ratio ~3 times higher than that of previously reported ZnGa2O4: Cr3+ (ZGC-1) nanoparticles as an NIR persistent-luminescence probe for in vivo bioimaging. Moreover, the persistent-luminescence signal from the ZGOCS nanoparticles can be repeatedly re-charged in situ with external excitation by a white lightemitting diode; thus, the nanoparticles are suitable for long-term in vivo imaging applications. Our study suggests an improved strategy for fabricating novel high-performance optical nanoparticles with good biocompatibility.

Electronic Supplementary Material

Download File(s)
nr-10-6-2070_ESM.pdf (2.1 MB)

References

1

Van den Eeckhout, K.; Poelman, D.; Smet, P. F. Persistent luminescence in non-Eu2+-doped compounds: A review. Materials 2013, 6, 2789–2818.

2

Hölsä, J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem. Soc. Interface 2009, 18, 42–45.

3

Pan, Z. W.; Lu, Y. -Y.; Liu, F. Sunlight-activated long- persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63.

4

le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J. -P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.

5

Debasu, M. L.; Ananias, D.; Pinho, S. L. C.; Geraldes, C. F. G. C.; Carlos, L. D.; Rocha, J. (Gd, Yb, Tb)PO4 up-conversion nanocrystals for bimodal luminescence–MR imaging. Nanoscale 2012, 4, 5154–5162.

6

Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426.

7

Tavares, A. J.; Chong, L.; Petryayeva, E.; Algar, W. R.; Krull, U. J. Quantum dots as contrast agents for in vivo tumor imaging: Progress and issues. Anal. Bioanal. Chem. 2011, 399, 2331–2342.

8

Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

9

Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 2003, 9, 123–128.

10

Liu, Q.; Sun, Y.; Li, C. G.; Zhou, J.; Li, C. Y.; Yang, T. S.; Zhang, X. Z.; Yi, T.; Wu, D. M.; Li, F. Y. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation- assisted ligand assembly. ACS Nano 2011, 5, 3146–3157.

11

Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

12

Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.

13

Chan, C. F.; Xie, C.; Tsang, M. K.; Lear, S.; Dai, L. X.; Zhou, Y.; Cicho, J.; Karbowiak, M.; Hreniak, D.; Lan, R. F. The effects of morphology and linker length on the properties of peptide–lanthanide upconversion nanomaterials as G2 phase cell cycle inhibitors. Eur. J. Inorg. Chem. 2015, 2015, 4539–4545.

14

Gallo, J.; Alam, I. S.; Jin, J. F.; Gu, Y. -J.; Aboagye, E. O.; Wong, W. -T.; Long, N. J. PET imaging with multimodal upconversion nanoparticles. Dalton Trans. 2014, 43, 5535–5545.

15

Chen, C. -W.; Lee, P. -H.; Chan, Y. -C.; Hsiao, M.; Chen, C. -H.; Wu, P. C.; Wu, P. R.; Tsai, D. P.; Tu, D. T.; Chen, X. Y. et al. Plasmon-induced hyperthermia: Hybrid upconversion NaYF4: Yb/Er and gold nanomaterials for oral cancer photothermal therapy. J. Mater. Chem. B 2015, 3, 8293–8302.

16

Geißler, D.; Charbonnière, L. J.; Ziessel, R. F.; Butlin, N. G.; Löhmannsröben, H. G.; Hildebrandt, N. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem., Int. Ed. 2010, 49, 1396–1401.

17

Luo, S. L.; Zhang, E. L.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138.

18

Yahia-Ammar, A.; Nonat, A. M.; Boos, A.; Rehspringer, J. -L.; Asfari, Z.; Charbonnière, L. J. Thin-coated water soluble CdTeS alloyed quantum dots as energy donors for highly efficient FRET. Dalton Trans. 2014, 43, 15583–15592.

19

Dai, W. B.; Lei, Y. F.; Ye, S.; Song, E. H.; Chen, Z.; Zhang, Q. Y. Mesoporous nanoparticles Gd2O3@ mSiO2/ ZnGa2O4: Cr3+, Bi3+ as multifunctional probes for bioimaging. J. Mater. Chem. B 2016, 4, 1842–1852.

20

Shi, J. P.; Sun, X.; Li, J. L.; Man, H. Z.; Shen, J. S.; Yu, Y. K.; Zhang, H. W. Multifunctional near infrared-emitting long- persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 2015, 37, 260–270.

21

Teston, E.; Richard, S.; Maldiney, T.; Lièvre, N.; Wang, G. Y.; Motte, L.; Richard, C.; Lalatonne, Y. Non-aqueous sol–gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem. —Eur. J. 2015, 21, 7350–7354.

22

Srivastava, B. B.; Kuang, A. X.; Mao, Y. B. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. 2015, 51, 7372–7375.

23

Li, Y.; Li, Y. Y.; Chen, R. C.; Sharafudeen, K.; Zhou, S. F.; Gecevicius, M.; Wang, H. H.; Dong, G. P.; Wu, Y. L.; Qin, X. X. et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 2015, 7, e180.

24

Zhuang, Y. X.; Ueda, J.; Tanabe, S. Tunable trap depth in Zn(Ga1-xAlx)2O4: Cr, Bi red persistent phosphors: Considerations of high-temperature persistent luminescence and photostimulated persistent luminescence. J. Mater. Chem. C 2013, 1, 7849–7855.

25

Maldiney, T.; Richard, C.; Seguin, J.; Wattier, N.; Bessodes, M.; Scherman, D. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 2011, 5, 854–862.

26

Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphors—From fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136.

27

Maldiney, T.; Rémond, M.; Bessodes, M.; Scherman, D.; Richard, C. Controlling aminosilane layer thickness to extend the plasma half-life of stealth persistent luminescence nanoparticles in vivo. J. Mater. Chem. B 2015, 3, 4009–4016.

28

Abdukayum, A.; Chen, J. -T.; Zhao, Q.; Yan, X. -P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.

29

Wang, F.; Wang, J.; Liu, X. G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem., Int. Ed. 2010, 122, 7618–7622.

30

Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable near- infrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.

31

Zhou, W. L.; Zou, R.; Yang, X. F.; Huang, N. Y.; Huang, J. J.; Liang, H. B.; Wang, J. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core–shell structures via the Kirkendall effect. Nanoscale 2015, 7, 13715–13722.

32

Pinho, S. L. C.; Pereira, G. A.; Voisin, P.; Kassem, J.; Bouchaud, V.; Etienne, L.; Peters, J. A.; Carlos, L.; Mornet, S.; Geraldes, C. F. et al. Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 2010, 4, 5339–5349.

33

Gallo, J.; Alam, I. S.; Lavdas, I.; Wylezinska-Arridge, M.; Aboagye, E. O.; Long, N. J. RGD-targeted MnO nanoparticles as T1 contrast agents for cancer imaging—The effect of PEG length in vivo. J. Mater. Chem. B 2014, 2, 868–876.

34

Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4: Cr3+: A new red long-lasting phosphor with high brightness. Opt. Express 2011, 19, 10131–10137.

35

Allix, M.; Chenu, S.; Véron, E.; Poumeyrol, T.; Kouadri- Boudjelthia, E. A.; Alahraché, S.; Porcher, F.; Massiot, D.; Fayon, F. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 2013, 25, 1600–1606.

36

Lee, Y. E.; Norton, D. P.; Budai, J. D. Enhanced photoluminescence in epitaxial ZnGa2O4: Mn thin-film phosphors using pulsed-laser deposition. Appl. Phys. Lett. 1999, 74, 3155–3157.

37

Kang, B. K.; Lim, H. D.; Mang, S. R.; Song, K. M.; Jung, M. K.; Yoon, D. H. Synthesis and characteristics of ZnGa2O4 hollow nanostructures via carbon@Ga(OH)CO3@Zn(OH)2 by a hydrothermal method. CrystEngComm 2015, 17, 2267–2272.

38

Bessière, A.; Sharma, S. K.; Basavaraju, N.; Priolkar, K. R.; Binet, L.; Viana, B.; Bos, A. J. J.; Maldiney, T.; Richard, C.; Scherman, D. et al. Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate. Chem. Mater. 2014, 26, 1365–1373.

39

Maldiney, T.; Lecointre, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 2011, 133, 11810–11815.

40

Li, Z. J.; Shi, J. P.; Zhang, H. W.; Sun, M. Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo. Opt. Express 2014, 22, 10509–10518.

41

Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728.

Nano Research
Pages 2070-2082
Cite this article:
Zou R, Huang J, Shi J, et al. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Research, 2017, 10(6): 2070-2082. https://doi.org/10.1007/s12274-016-1396-z

666

Views

109

Crossref

N/A

Web of Science

115

Scopus

11

CSCD

Altmetrics

Received: 17 October 2016
Revised: 24 November 2016
Accepted: 27 November 2016
Published: 27 January 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return