Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Near-infrared (NIR) persistent-luminescence nanoparticles have emerged as a new class of background-free contrast agents that are promising for in vivo imaging. The next key roadblock is to establish a robust and controllable method for synthesizing monodisperse nanoparticles with high luminescence brightness and long persistent duration. Herein, we report a synthesis strategy involving the coating/etching of the SiO2 shell to obtain a new class of small NIR highly persistent luminescent ZnGa2O4: Cr3+, Sn4+ (ZGOCS) nanoparticles. The optimized ZGOCS nanoparticles have an excellent size distribution of ~15 nm without any agglomeration and an NIR persistent luminescence that is enhanced by a factor of 13.5, owing to the key role of the SiO2 shell in preventing nanoparticle agglomeration after annealing. The ZGOCS nanoparticles have a signal-to-noise ratio ~3 times higher than that of previously reported ZnGa2O4: Cr3+ (ZGC-1) nanoparticles as an NIR persistent-luminescence probe for in vivo bioimaging. Moreover, the persistent-luminescence signal from the ZGOCS nanoparticles can be repeatedly re-charged in situ with external excitation by a white lightemitting diode; thus, the nanoparticles are suitable for long-term in vivo imaging applications. Our study suggests an improved strategy for fabricating novel high-performance optical nanoparticles with good biocompatibility.
Van den Eeckhout, K.; Poelman, D.; Smet, P. F. Persistent luminescence in non-Eu2+-doped compounds: A review. Materials 2013, 6, 2789–2818.
Hölsä, J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem. Soc. Interface 2009, 18, 42–45.
Pan, Z. W.; Lu, Y. -Y.; Liu, F. Sunlight-activated long- persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63.
le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J. -P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.
Debasu, M. L.; Ananias, D.; Pinho, S. L. C.; Geraldes, C. F. G. C.; Carlos, L. D.; Rocha, J. (Gd, Yb, Tb)PO4 up-conversion nanocrystals for bimodal luminescence–MR imaging. Nanoscale 2012, 4, 5154–5162.
Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426.
Tavares, A. J.; Chong, L.; Petryayeva, E.; Algar, W. R.; Krull, U. J. Quantum dots as contrast agents for in vivo tumor imaging: Progress and issues. Anal. Bioanal. Chem. 2011, 399, 2331–2342.
Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.
Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 2003, 9, 123–128.
Liu, Q.; Sun, Y.; Li, C. G.; Zhou, J.; Li, C. Y.; Yang, T. S.; Zhang, X. Z.; Yi, T.; Wu, D. M.; Li, F. Y. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation- assisted ligand assembly. ACS Nano 2011, 5, 3146–3157.
Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.
Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.
Chan, C. F.; Xie, C.; Tsang, M. K.; Lear, S.; Dai, L. X.; Zhou, Y.; Cicho, J.; Karbowiak, M.; Hreniak, D.; Lan, R. F. The effects of morphology and linker length on the properties of peptide–lanthanide upconversion nanomaterials as G2 phase cell cycle inhibitors. Eur. J. Inorg. Chem. 2015, 2015, 4539–4545.
Gallo, J.; Alam, I. S.; Jin, J. F.; Gu, Y. -J.; Aboagye, E. O.; Wong, W. -T.; Long, N. J. PET imaging with multimodal upconversion nanoparticles. Dalton Trans. 2014, 43, 5535–5545.
Chen, C. -W.; Lee, P. -H.; Chan, Y. -C.; Hsiao, M.; Chen, C. -H.; Wu, P. C.; Wu, P. R.; Tsai, D. P.; Tu, D. T.; Chen, X. Y. et al. Plasmon-induced hyperthermia: Hybrid upconversion NaYF4: Yb/Er and gold nanomaterials for oral cancer photothermal therapy. J. Mater. Chem. B 2015, 3, 8293–8302.
Geißler, D.; Charbonnière, L. J.; Ziessel, R. F.; Butlin, N. G.; Löhmannsröben, H. G.; Hildebrandt, N. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem., Int. Ed. 2010, 49, 1396–1401.
Luo, S. L.; Zhang, E. L.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138.
Yahia-Ammar, A.; Nonat, A. M.; Boos, A.; Rehspringer, J. -L.; Asfari, Z.; Charbonnière, L. J. Thin-coated water soluble CdTeS alloyed quantum dots as energy donors for highly efficient FRET. Dalton Trans. 2014, 43, 15583–15592.
Dai, W. B.; Lei, Y. F.; Ye, S.; Song, E. H.; Chen, Z.; Zhang, Q. Y. Mesoporous nanoparticles Gd2O3@ mSiO2/ ZnGa2O4: Cr3+, Bi3+ as multifunctional probes for bioimaging. J. Mater. Chem. B 2016, 4, 1842–1852.
Shi, J. P.; Sun, X.; Li, J. L.; Man, H. Z.; Shen, J. S.; Yu, Y. K.; Zhang, H. W. Multifunctional near infrared-emitting long- persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 2015, 37, 260–270.
Teston, E.; Richard, S.; Maldiney, T.; Lièvre, N.; Wang, G. Y.; Motte, L.; Richard, C.; Lalatonne, Y. Non-aqueous sol–gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem. —Eur. J. 2015, 21, 7350–7354.
Srivastava, B. B.; Kuang, A. X.; Mao, Y. B. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. 2015, 51, 7372–7375.
Li, Y.; Li, Y. Y.; Chen, R. C.; Sharafudeen, K.; Zhou, S. F.; Gecevicius, M.; Wang, H. H.; Dong, G. P.; Wu, Y. L.; Qin, X. X. et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 2015, 7, e180.
Zhuang, Y. X.; Ueda, J.; Tanabe, S. Tunable trap depth in Zn(Ga1-xAlx)2O4: Cr, Bi red persistent phosphors: Considerations of high-temperature persistent luminescence and photostimulated persistent luminescence. J. Mater. Chem. C 2013, 1, 7849–7855.
Maldiney, T.; Richard, C.; Seguin, J.; Wattier, N.; Bessodes, M.; Scherman, D. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 2011, 5, 854–862.
Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphors—From fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136.
Maldiney, T.; Rémond, M.; Bessodes, M.; Scherman, D.; Richard, C. Controlling aminosilane layer thickness to extend the plasma half-life of stealth persistent luminescence nanoparticles in vivo. J. Mater. Chem. B 2015, 3, 4009–4016.
Abdukayum, A.; Chen, J. -T.; Zhao, Q.; Yan, X. -P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.
Wang, F.; Wang, J.; Liu, X. G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem., Int. Ed. 2010, 122, 7618–7622.
Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable near- infrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.
Zhou, W. L.; Zou, R.; Yang, X. F.; Huang, N. Y.; Huang, J. J.; Liang, H. B.; Wang, J. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core–shell structures via the Kirkendall effect. Nanoscale 2015, 7, 13715–13722.
Pinho, S. L. C.; Pereira, G. A.; Voisin, P.; Kassem, J.; Bouchaud, V.; Etienne, L.; Peters, J. A.; Carlos, L.; Mornet, S.; Geraldes, C. F. et al. Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 2010, 4, 5339–5349.
Gallo, J.; Alam, I. S.; Lavdas, I.; Wylezinska-Arridge, M.; Aboagye, E. O.; Long, N. J. RGD-targeted MnO nanoparticles as T1 contrast agents for cancer imaging—The effect of PEG length in vivo. J. Mater. Chem. B 2014, 2, 868–876.
Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4: Cr3+: A new red long-lasting phosphor with high brightness. Opt. Express 2011, 19, 10131–10137.
Allix, M.; Chenu, S.; Véron, E.; Poumeyrol, T.; Kouadri- Boudjelthia, E. A.; Alahraché, S.; Porcher, F.; Massiot, D.; Fayon, F. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 2013, 25, 1600–1606.
Lee, Y. E.; Norton, D. P.; Budai, J. D. Enhanced photoluminescence in epitaxial ZnGa2O4: Mn thin-film phosphors using pulsed-laser deposition. Appl. Phys. Lett. 1999, 74, 3155–3157.
Kang, B. K.; Lim, H. D.; Mang, S. R.; Song, K. M.; Jung, M. K.; Yoon, D. H. Synthesis and characteristics of ZnGa2O4 hollow nanostructures via carbon@Ga(OH)CO3@Zn(OH)2 by a hydrothermal method. CrystEngComm 2015, 17, 2267–2272.
Bessière, A.; Sharma, S. K.; Basavaraju, N.; Priolkar, K. R.; Binet, L.; Viana, B.; Bos, A. J. J.; Maldiney, T.; Richard, C.; Scherman, D. et al. Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate. Chem. Mater. 2014, 26, 1365–1373.
Maldiney, T.; Lecointre, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 2011, 133, 11810–11815.
Li, Z. J.; Shi, J. P.; Zhang, H. W.; Sun, M. Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo. Opt. Express 2014, 22, 10509–10518.
Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728.