AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics

Dewei Ma1,2,§Yongping Fu1,§Lianna Dang1Jianyuan Zhai1Ilia A. Guzei1Song Jin1( )
Department of ChemistryUniversity of Wisconsin-MadisonMadisonWisconsin53706USA
Department of Applied PhysicsZhejiang University of TechnologyHangzhou310014China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Organic–inorganic hybrid perovskites attract considerable attention owing to their applications in high-efficiency solar cells and light emission. Compared with three-dimensional perovskites, two-dimensional (2D) layered hybrid perovskites have a higher exciton binding energy and potentially higher light-emission efficiency. The growth of high-quality crystalline 2D perovskites with a well-defined nanoscale morphology is desirable because they can be suitable building blocks for integrated optoelectronics and (nano)photonics. Herein, we report the facile solution growth of single-crystal microplates of 2D perovskites based on a 2-phenylethylammonium (C6H5CH2CH2NH3+, PEA) cation, (PEA)2PbX4 (X = Br, I), with a well-defined rectangular geometry and nanoscale thickness through a dissolution–recrystallization process. The crystal structures of (PEA)2PbX4 are first confirmed using single-crystal X-ray diffraction. A solution-phase transport-growth process is developed to grow microplates with a typical size of tens of micrometers and thickness of hundreds of nanometers on another clean substrate different from the substrate coated with lead-acetate precursor film. Surface-topography analysis suggests that the formation of the 2D microplates is likely driven by the wedding-cake growth mechanism. Through halide alloying, the photoluminescence emission of (PEA)2Pb(Br, I)4 perovskites with a narrow peak bandwidth is readily tuned from violet (~410 nm) to green (~530 nm).

Electronic Supplementary Material

Download File(s)
nr-10-6-2117_ESM.pdf (2.7 MB)

References

1

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso- superstructured organometal halide perovskites. Science 2012, 338, 643–647.

2

Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402.

3

Burschka, J.; Pellet, N.; Moon, S. -J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

4

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

5

Xing, G. C.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X. F.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Low- temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480.

6

Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

7

Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C.; Xiong, Q. H. Room-temperature near-infrared high-Q perovskite whispering- gallery planar nanolasers. Nano Lett. 2014, 14, 5995–6001.

8

Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q. H. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 2015, 15, 4571–4577.

9

Li, D. H.; Wang, G. M.; Cheng, H. C.; Chen, C. Y.; Wu, H.; Liu, Y.; Huang, Y.; Duan, X. F. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 2016, 7, 11330.

10

Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

11

Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G. J.; Azimi, H.; Brabec, C. J.; Stangl, J.; Kovalenko, M. V. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 2015, 9, 444–449.

12

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

13

Fu, Y. P.; Zhu, H. M.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X. Y.; Jin, S. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 2016, 16, 1000– 1008.

14

Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

15

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

16

Hong, X.; Ishihara, T.; Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 1992, 45, 6961–6964.

17

Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 2003, 67, 155405.

18

Saba, M.; Quochi, F.; Mura, A.; Bongiovanni, G. Excited state properties of hybrid perovskites. Acc. Chem. Res. 2016, 49, 166–173.

19

Mitzi, D. B.; Prikas, M. T.; Chondroudis, K. Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique. Chem. Mater. 1999, 11, 542–544.

20

Mitzi, D. B. Thin-film deposition of organic-inorganic hybrid materials. Chem. Mater. 2001, 13, 3283–3298.

21

Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc., Dalton Trans. 2001, 1–12.

22

Cheng, Z. Y.; Lin, J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12, 2646–2662.

23

Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic–inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676–678.

24

Koutselas, I.; Bampoulis, P.; Maratou, E.; Evagelinou, T.; Pagona, G.; Papavassiliou, G. C. Some unconventional organic-inorganic hybrid low-dimensional semiconductors and related light-emitting devices. J. Phys. Chem. C 2011, 115, 8475–8483.

25

Kishimoto, S.; Shibuya, K.; Nishikido, F.; Koshimizu, M.; Haruki, R.; Yoda, Y. Subnanosecond time-resolved X-ray measurements using an organic–inorganic perovskite scintillator. Appl. Phys. Lett. 2008, 93, 261901.

26

Lanty, G.; Lauret, J. S.; Deleporte, E.; Bouchoule, S.; Lafosse, X. UV polaritonic emission from a perovskite-based microcavity. Appl. Phys. Lett. 2008, 93, 081101.

27

Pradeesh, K.; Baumberg, J. J.; Prakash, G. V. Strong exciton–photon coupling in inorganic–organic multiple quantum wells embedded low-Q microcavity. Opt. Express 2009, 17, 22171–22178.

28

Kondo, T.; Azuma, T.; Yuasa, T.; Ito, R. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998, 105, 253–255.

29

Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 2014, 126, 11414–11417.

30

Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. 2D homologous perovskites as light- absorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843–7850.

31

Tsai, H.; Nie, W. Y.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency two- dimensional ruddlesden-popper perovskite solar cells. Nature 2016, 536, 312–316.

32

Quan, L. N.; Yuan, M. J.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A. et al. Ligand-stabilized reduced- dimensionality perovskites. J. Am. Chem. Soc. 2016, 138, 2649–2655.

33

Kitazawa, N.; Enomoto, K.; Aono, M.; Watanabe, Y. Optical properties of (C6H5C2H4NH3)2PbI4-xBrx (x = 0–4) mixed-crystal doped PMMA films. J. Mater. Sci. 2004, 39, 749–751.

34

Zhang, S. J.; Audebert, P.; Wei, Y.; Al Choueiry, A.; Lanty, G.; Bréhier, A.; Galmiche, L.; Clavier, G.; Boissière, C.; Lauret, J. -S. et al. Preparations and characterizations of luminescent two dimensional organic–inorganic perovskite semiconductors. Materials 2010, 3, 3385–3406.

35

Kawano, N.; Koshimizu, M.; Sun, Y.; Yahaba, N.; Fujimoto, Y.; Yanagida, T.; Asai, K. Effects of organic moieties on luminescence properties of organic–inorganic layered perovskite-type compounds. J. Phys. Chem. C 2014, 118, 9101–9106.

36

Lanty, G.; Jemli, K.; Wei, Y.; Leymarie, J.; Even, J.; Lauret, J. -S.; Deleporte, E. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic– inorganic perovskite pseudobinary alloys. J. Phys. Chem. Lett. 2014, 5, 3958–3963.

37

Gonzalez-Carrero, S.; Espallargas, G. M.; Galian, R. E.; Pérez-Prieto, J. Blue-luminescent organic lead bromide perovskites: Highly dispersible and photostable materials. J. Mater. Chem. A 2015, 3, 14039–14045.

38

Yuan, Z.; Shu, Y.; Tian, Y.; Xin, Y.; Ma, B. W. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun. 2015, 51, 16385– 16388.

39

Liang, D.; Peng, Y. L.; Fu, Y. P.; Shearer, M. J.; Zhang, J. J.; Zhai, J. Y.; Zhang, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 2016, 10, 6897–6904.

40

Byun, J.; Cho, H.; Wolf, C.; Jang, M.; Sadhanala, A.; Friend, R. H.; Yang, H. C.; Lee, T. W. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 2016, 28, 7515–7520.

41

Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

42

de Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683–686.

43

Tian, W. M.; Zhao, C. Y.; Leng, J.; Cui, R. R.; Jin, S. Y. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 2015, 137, 12458–12461.

44

Dasgupta, N. P.; Sun, J. W.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H. W.; Yan, R. X.; Yang, P. D. 25th anniversary article: Semiconductor nanowires—Synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184.

45

Kempa, T. J.; Day, R. W.; Kim, S. -K.; Park, H. -G.; Lieber, C. M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719–733.

46

Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.

47

Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569–576.

48

Liang, D.; Cabán-Acevedo, M.; Kaiser, N. S.; Jin, S. Gated hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor. Nano Lett. 2014, 14, 6754–6760.

49

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

50

Dou, L. T.; Wong, A. B.; Yu, Y.; Lai, M. L.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. A. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 2015, 349, 1518–1521.

51

Wang, K. Y.; Sun, W. Z.; Li, J. K.; Gu, Z. Y.; Xiao, S. M.; Song, Q. H. Unidirectional lasing emissions from CH3NH3PbBr3 perovskite microdisks. ACS Photonics 2016, 3, 1125–1130.

52

Kitazawa, N. Excitons in two-dimensional layered perovskite compounds: (C6H5C2H4NH3)2Pb(Br, I)4 and (C6H5C2H4NH3)2Pb(Cl, Br)4. Mater. Sci. Eng. B 1997, 49, 233–238.

53

Kondo, T.; Iwamoto, S.; Hayase, S.; Tanaka, K.; Ishi, J.; Mizuno, M.; Ema, K.; Ito, R. Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998, 105, 503–506.

54

Papagiannouli, I.; Maratou, E.; Koutselas, I.; Couris, S. Synthesis and characterization of the nonlinear optical properties of novel hybrid organic–inorganic semiconductor lead iodide quantum wells and dots. J. Phys. Chem. C 2014, 118, 2766–2775.

55

Yaffe, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; van der Zande, A.; Owen, J. S.; Heinz, T. F. Excitons in ultrathin organic–inorganic perovskite crystals. Phys. Rev. B 2015, 92, 045414.

56

Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330.

57

Shibuya, K.; Koshimizu, M.; Nishikido, F.; Saito, H.; Kishimoto, S. Poly[bis(phenethyl-ammonium) [di-bromido- plumbate(II)]-di-μ-bromido]]. Acta Cryst. Sect. E Struct. Rep. Online 2009, 65, m1323–m1324.

58

Fu, Y. P.; Meng, F.; Rowley, M. B.; Thompson, B. J.; Shearer, M. J.; Ma, D. W.; Hamers, R. J.; Wright, J. C.; Jin, S. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 2015, 137, 5810–5818.

59

Meng, F.; Morin, S. A.; Forticaux, A.; Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 2013, 46, 1616–1626.

60

Yin, X.; Shi, J.; Niu, X. B.; Huang, H. C.; Wang, X. D. Wedding cake growth mechanism in one-dimensional and two-dimensional nanostructure evolution. Nano Lett. 2015, 15, 7766–7772.

61

Forticaux, A.; Dang, L. N.; Liang, H. F.; Jin, S. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations. Nano Lett. 2015, 15, 3403–3409.

62

Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096.

63

Wu, X. X.; Trinh, M. T.; Zhu, X. Y. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J. Phys. Chem. C 2015, 119, 14714–14721.

64

Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G. Synthesis, structural, thermal and optical studies of inorganic– organic hybrid semiconductors, R-PbI4. J. Appl. Phys. 2013, 113, 083523.

65

Zhu, H. M.; Miyata, K.; Fu, Y. P.; Wang, J.; Joshi, P. P.; Niesner, D.; Williams, K. W.; Jin, S.; Zhu, X. Y. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 2016, 353, 1409–1413.

66

Xiao, R.; Hou, Y. S.; Fu, Y. P.; Peng, X. Y.; Wang, Q.; Gonzalez, E.; Jin, S.; Yu, D. Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures. Nano Lett. 2016, 16, 7710–7717.

67

Zhu, H. M.; Trinh, M. T.; Wang, J.; Fu, Y. P.; Joshi, P. P.; Miyata, K.; Jin, S.; Zhu, X. Y. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 2017, 29, 1603072.

Nano Research
Pages 2117-2129
Cite this article:
Ma D, Fu Y, Dang L, et al. Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics. Nano Research, 2017, 10(6): 2117-2129. https://doi.org/10.1007/s12274-016-1401-6

943

Views

114

Crossref

N/A

Web of Science

110

Scopus

0

CSCD

Altmetrics

Received: 04 November 2016
Revised: 29 November 2016
Accepted: 01 December 2016
Published: 18 January 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return