Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Cooperative interactions among CTA+, Br and Ag+ during seeded growth of gold nanorods

Yong Xu1Lei Chen1Xingchen Ye2Xuchun Wang1Jiaqi Yu1Yang Zhao1Muhan Cao1Zhouhui Xia1Baoquan Sun1()Qiao Zhang1()
Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano and Soft Materials (FUNSOM)Soochow UniversitySuzhou215123China
Department of ChemistryUniversity of California BerkeleyBerkeleyCA94720USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

We have carried out a comprehensive study on the formation mechanism of Au nanorods (AuNRs) in binary surfactant mixtures composed of quaternary ammonium halide and sodium oleate (NaOL). We identify the cetyltrimethyl ammonium (CTA)-Br-Ag+ complex as the key ingredient in directing the anisotropic growth of AuNRs. Based on the improved understanding of the cooperative interactions among CTA+, Br and Ag+, we further demonstrate that AgBr, which is readily solubilized by the cetyltrimethyl ammonium bromide (CTAB) or cetyltrimethyl ammonium chloride (CTAC) micelles, can be employed as the combined source of Ag+ and Br for the preparation of AuNRs. The growth of high-quality AuNRs can be completed within 15 min under extremely low bromide content (0.1 mM).

Electronic Supplementary Material

Download File(s)
nr-10-6-2146_ESM.pdf (3.4 MB)

References

1

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

2

Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 3158–3163.

3

Fu, C. H.; He, C. F.; Tan, L. F.; Wang, S. H.; Shang, L.; Li, L. L.; Meng, X. W.; Liu, H. Y. High-yield preparation of robust gold nanoshells on silica nanorattles with good biocompatiblity. Sci. Bull. 2016, 61, 282–291.

4

Mettela, G.; Kulkarni, G. U. Facet selective etching of Au microcrystallites. Nano Res. 2015, 8, 2925–2934.

5

Ma, L. G.; Huang, Z. H.; Duan, Y. Y.; Shen, X. F.; Che, S. Optically active chiral Ag nanowires. Sci. China Mater. 2015, 58, 441–446.

6

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

7

Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 2009, 3, 80–86.

8

Grabinski, C.; Schaeublin, N.; Wijaya, A.; D'Couto, H.; Baxamusa, S. H.; Hamad-Schifferli, K.; Hussain, S. M. Effect of gold nanorod surface chemistry on cellular response. ACS Nano 2011, 5, 2870–2879.

9

Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636.

10

Wang, L. B.; Zhu, Y. Y.; Xu, L. G.; Chen, W.; Kuang, H.; Liu, L. Q.; Agarwal, A.; Xu, C. L.; Kotov, N. A. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew. Chem., Int. Ed. 2010, 49, 5472–5475.

11

Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391.

12

Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

13

Huschka, R.; Zuloaga, J.; Knight, M. W.; Brown, L. V.; Nordlander, P.; Halas, N. J. Light-induced release of DNA from gold nanoparticles: Nanoshells and nanorods. J. Am. Chem. Soc. 2011, 133, 12247–12255.

14

Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

15

Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

16

Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554.

17

Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945.

18

Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker. Nano Lett. 2007, 7, 1591–1597.

19

Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; de la Fuentea, J. M. et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 2016, 10, 2375–2385.

20

Rycenga, M.; McLellan, J. M.; Xia, Y. N. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 2008, 20, 2416–2420.

21

Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface- enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229–1233.

22

Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911.

23

Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbó-Argibay, E.; Pazos-Pérez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface Enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157–8161.

24

Xu, Y.; Zhao, Y.; Chen, L.; Wang, X. C.; Sun, J. X.; Wu, H. H.; Bao, F.; Fan, J.; Zhang, Q. Large-scale, low-cost synthesis of monodispersed gold nanorods using a gemini surfactant. Nanoscale 2015, 7, 6790–6797.

25

Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B 1997, 101, 6661–6664.

26

Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.

27

Busbee, B. D.; Obare, S. O.; Murphy, C. J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003, 15, 414–416.

28

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

29

Wu, H. Y.; Chu, H. C.; Kuo, T. J.; Kuo, C. L.; Huang, M. H. Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid. Chem. Mater. 2005, 17, 6447–6451.

30

Zhu, J.; Yong, K. T.; Roy, I.; Hu, R.; Ding, H.; Zhao, L. L.; Swihart, M. T.; He, G. S.; Cui, Y. P.; Prasad, P. N. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology 2010, 21, 285106.

31

Kim, F.; Sohn, K.; Wu, J. S.; Huang, J. X. Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc. 2008, 130, 14442–14443.

32

Zweifel, D. A.; Wei, A. Sulfide-arrested growth of gold nanorods. Chem. Mater. 2005, 17, 4256–4261.

33

Smith, D. K.; Miller, N. R.; Korgel, B. A. Iodide in CTAB prevents gold nanorod formation. Langmuir 2009, 25, 9518–9524.

34

Smith, D. K.; Korgel, B. A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 2008, 24, 644–649.

35

Rayavarapu, R. G.; Ungureanu, C.; Krystek, P.; van Leeuwen, T. G.; Manohar, S. Iodide impurities in hexadecyltrimethylammonium bromide (CTAB) products: Lot–lot variations and influence on gold nanorod synthesis. Langmuir 2010, 26, 5050–5055.

36

Sau, T. K.; Murphy, C. J. Role of ions in the colloidal synthesis of gold nanowires. Philos. Mag. 2007, 87, 2143–2158.

37

Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163–2171.

38

Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

39

Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.

40

Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.

41

Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. C. The role of bromide ions in seeding growth of Au nanorods. Langmuir 2010, 26, 10271–10276.

42

Liu, M. Z.; Guyot-Sionnest, P. Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192–22200.

43

Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett. 2011, 11, 3394–3398.

44

Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

45

Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770.

46

Hubert, F.; Testard, F.; Spalla, O. Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. Langmuir 2008, 24, 9219–9222.

47

Pérez-Juste, J.; Liz-Marzán, L.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 2004, 14, 571–579.

48

Jackson, S. R.; McBride, J. R.; Rosenthal, S. J.; Wright, D. W. Where's the silver? Imaging trace silver coverage on the surface of gold nanorods. J. Am. Chem. Soc. 2014, 136, 5261–5263.

49

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

50

Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C. Chemical kinetics of gold nanorod growth in aqueous CTAB solutions. Cryst. Growth Des. 2011, 11, 3375–3380.

51

Almora-Barrios, N.; Novell-Leruth, G.; Whiting, P.; Liz-Marzán, L. M.; López, N. Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett. 2014, 14, 871–875.

52

Ito, K.; Ariyoshi, Y.; Tanabiki, F.; Sunahara, H. Anion chromatography using octadecylsilane reversed-phase columns coated with cetyltrimethylammonium and its application to nitrite and nitrate in seawater. Anal. Chem. 1991, 63, 273–276.

53

Liu, X. H.; Luo, X. H.; Lu, S. X.; Zhang, J. C.; Cao, W. L. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion. J. Colloid Interface Sci. 2007, 307, 94–100.

54

Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330.

Nano Research
Pages 2146-2155
Cite this article:
Xu Y, Chen L, Ye X, et al. Cooperative interactions among CTA+, Br and Ag+ during seeded growth of gold nanorods. Nano Research, 2017, 10(6): 2146-2155. https://doi.org/10.1007/s12274-016-1404-3
Metrics & Citations  
Article History
Copyright
Return