Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We have carried out a comprehensive study on the formation mechanism of Au nanorods (AuNRs) in binary surfactant mixtures composed of quaternary ammonium halide and sodium oleate (NaOL). We identify the cetyltrimethyl ammonium (CTA)-Br-Ag+ complex as the key ingredient in directing the anisotropic growth of AuNRs. Based on the improved understanding of the cooperative interactions among CTA+, Br– and Ag+, we further demonstrate that AgBr, which is readily solubilized by the cetyltrimethyl ammonium bromide (CTAB) or cetyltrimethyl ammonium chloride (CTAC) micelles, can be employed as the combined source of Ag+ and Br– for the preparation of AuNRs. The growth of high-quality AuNRs can be completed within 15 min under extremely low bromide content (0.1 mM).
Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.
Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 3158–3163.
Fu, C. H.; He, C. F.; Tan, L. F.; Wang, S. H.; Shang, L.; Li, L. L.; Meng, X. W.; Liu, H. Y. High-yield preparation of robust gold nanoshells on silica nanorattles with good biocompatiblity. Sci. Bull. 2016, 61, 282–291.
Mettela, G.; Kulkarni, G. U. Facet selective etching of Au microcrystallites. Nano Res. 2015, 8, 2925–2934.
Ma, L. G.; Huang, Z. H.; Duan, Y. Y.; Shen, X. F.; Che, S. Optically active chiral Ag nanowires. Sci. China Mater. 2015, 58, 441–446.
Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.
Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 2009, 3, 80–86.
Grabinski, C.; Schaeublin, N.; Wijaya, A.; D'Couto, H.; Baxamusa, S. H.; Hamad-Schifferli, K.; Hussain, S. M. Effect of gold nanorod surface chemistry on cellular response. ACS Nano 2011, 5, 2870–2879.
Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636.
Wang, L. B.; Zhu, Y. Y.; Xu, L. G.; Chen, W.; Kuang, H.; Liu, L. Q.; Agarwal, A.; Xu, C. L.; Kotov, N. A. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew. Chem., Int. Ed. 2010, 49, 5472–5475.
Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391.
Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.
Huschka, R.; Zuloaga, J.; Knight, M. W.; Brown, L. V.; Nordlander, P.; Halas, N. J. Light-induced release of DNA from gold nanoparticles: Nanoshells and nanorods. J. Am. Chem. Soc. 2011, 133, 12247–12255.
Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.
Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.
Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554.
Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945.
Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker. Nano Lett. 2007, 7, 1591–1597.
Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; de la Fuentea, J. M. et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 2016, 10, 2375–2385.
Rycenga, M.; McLellan, J. M.; Xia, Y. N. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 2008, 20, 2416–2420.
Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface- enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229–1233.
Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911.
Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbó-Argibay, E.; Pazos-Pérez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface Enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157–8161.
Xu, Y.; Zhao, Y.; Chen, L.; Wang, X. C.; Sun, J. X.; Wu, H. H.; Bao, F.; Fan, J.; Zhang, Q. Large-scale, low-cost synthesis of monodispersed gold nanorods using a gemini surfactant. Nanoscale 2015, 7, 6790–6797.
Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B 1997, 101, 6661–6664.
Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.
Busbee, B. D.; Obare, S. O.; Murphy, C. J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003, 15, 414–416.
Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.
Wu, H. Y.; Chu, H. C.; Kuo, T. J.; Kuo, C. L.; Huang, M. H. Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid. Chem. Mater. 2005, 17, 6447–6451.
Zhu, J.; Yong, K. T.; Roy, I.; Hu, R.; Ding, H.; Zhao, L. L.; Swihart, M. T.; He, G. S.; Cui, Y. P.; Prasad, P. N. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology 2010, 21, 285106.
Kim, F.; Sohn, K.; Wu, J. S.; Huang, J. X. Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc. 2008, 130, 14442–14443.
Zweifel, D. A.; Wei, A. Sulfide-arrested growth of gold nanorods. Chem. Mater. 2005, 17, 4256–4261.
Smith, D. K.; Miller, N. R.; Korgel, B. A. Iodide in CTAB prevents gold nanorod formation. Langmuir 2009, 25, 9518–9524.
Smith, D. K.; Korgel, B. A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 2008, 24, 644–649.
Rayavarapu, R. G.; Ungureanu, C.; Krystek, P.; van Leeuwen, T. G.; Manohar, S. Iodide impurities in hexadecyltrimethylammonium bromide (CTAB) products: Lot–lot variations and influence on gold nanorod synthesis. Langmuir 2010, 26, 5050–5055.
Sau, T. K.; Murphy, C. J. Role of ions in the colloidal synthesis of gold nanowires. Philos. Mag. 2007, 87, 2143–2158.
Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163–2171.
Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.
Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.
Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.
Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. C. The role of bromide ions in seeding growth of Au nanorods. Langmuir 2010, 26, 10271–10276.
Liu, M. Z.; Guyot-Sionnest, P. Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192–22200.
Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett. 2011, 11, 3394–3398.
Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.
Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770.
Hubert, F.; Testard, F.; Spalla, O. Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. Langmuir 2008, 24, 9219–9222.
Pérez-Juste, J.; Liz-Marzán, L.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 2004, 14, 571–579.
Jackson, S. R.; McBride, J. R.; Rosenthal, S. J.; Wright, D. W. Where's the silver? Imaging trace silver coverage on the surface of gold nanorods. J. Am. Chem. Soc. 2014, 136, 5261–5263.
Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.
Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C. Chemical kinetics of gold nanorod growth in aqueous CTAB solutions. Cryst. Growth Des. 2011, 11, 3375–3380.
Almora-Barrios, N.; Novell-Leruth, G.; Whiting, P.; Liz-Marzán, L. M.; López, N. Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett. 2014, 14, 871–875.
Ito, K.; Ariyoshi, Y.; Tanabiki, F.; Sunahara, H. Anion chromatography using octadecylsilane reversed-phase columns coated with cetyltrimethylammonium and its application to nitrite and nitrate in seawater. Anal. Chem. 1991, 63, 273–276.
Liu, X. H.; Luo, X. H.; Lu, S. X.; Zhang, J. C.; Cao, W. L. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion. J. Colloid Interface Sci. 2007, 307, 94–100.
Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330.