Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The optical absorption of semiconducting AgBr nanocubes is significantly increased by up to 5 times in the measured spectral range when they are bonded to the surface of dielectric SiO2 nanospheres through electrostatic interaction. The absorption enhancement factor depends on the wavelength and the size of the SiO2 nanoparticles (NPs). Finite-difference time-domain calculations provide the nearfield intensity mapping of a heterostructure that is composed of a AgBr nanocube in close contact with a SiO2 nanosphere. The electric-field distributions indicate the field enhancement near the SiO2/AgBr interface due to light scattering and absorption enhancement in the AgBr nanocube, implying that the enhanced scattering nearfield increases the absorption cross section of the AgBr nanocube. The absorption cross-section spectra calculated using Mie theory agree with the experimental observations. This discovery sheds light on the utilization of dielectric spherical particles to increase the absorption in semiconductor NPs, thus improving the light-harvesting efficiency for solar-energy conversion.
Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.
Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455-459.
Kamat, P. V.; Tvrdy, K.; Baker, D. R.; Radich, J. G. Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 2010, 110, 6664-6688.
Beard, M. C.; Luther, J. M.; Semonin, O. E.; Nozik, A. J. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc. Chem. Res. 2013, 46, 1252-1260.
Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014, 114, 10095-10130.
Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732-12763.
Hoffmann, M. R.; Martin, S. T.; Choi, W; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.
Liu, Y. X.; Shi, J. X.; Peng, Q.; Li, Y. D. CuO quantum- dot-sensitized mesoporous ZnO for visible-light photocatalysis. Chem. —Eur. J. 2013, 19, 4319-4326.
Li, Z.; Hu, Y. X.; Sun, Y. G. Promoting photocatalytic multiple-electron reduction in aerobic solutions using Au- tipped CdSe nanorod clusters. Chem. Commun. 2014, 50, 1411-1413.
Chen, Y. G.; Zhao, S.; Wang, X.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhang, L. B.; Zhou, G. et al. Synergetic integration of Cu1.94S-ZnxCd1-xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 2016, 138, 4286-4289.
Rasamani, K. D.; Li, Z.; Sun, Y. Significant enhancement of photocatalytic water splitting enabled by elimination of surface traps in Pt-tipped CdSe nanorods. Nanoscale 2016, 8, 18621-18625.
Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603-2636.
Regulacio, M. D.; Han, M. Y. Multinary I-Ⅲ-VI2 and I2-Ⅱ-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511-519.
Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3-27.
Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 2002, 106, 7619-7622.
Feng, N. N.; Michel; J., Zeng; L. R., Liu, J. F.; Hong, C. Y.; Kimerling, L. C.; Duan, X. M. Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells. IEEE Trans. Electron Dev. 2007, 54, 1926-1933.
Yoon, J.; Baca, A. J.; Park, S. I.; Elvikis, P.; Geddes, J. B., Ⅲ; Li, L. F.; Kim, R. H.; Xiao, J. L.; Wang, S. D.; Kim, T. H. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 2008, 7, 907-915.
Zheng, Y. Z.; Tao, X.; Wang, L. X.; Xu, H.; Hou, Q.; Zhou, W. L.; Chen, J. F. Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater. 2010, 22, 928-934.
Son, S.; Hwang, S. H.; Kim, C.; Yun, J. Y.; Jang, J. Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2013, 5, 4815-4820.
Ullah, S.; Ferreira-Neto, E. P.; Pasa, A. A.; Alcântara, C. C. J.; Acuña, J. J. S.; Bilmes, S. A.; Ricci, M. L. M.; Landers, R.; Fermino, T. Z.; Rodrigues-Filho, U. P. Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. Appl. Catal. B: Environ. 2015, 179, 333-343.
Linic, S.; Christopher, P; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.
Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310-2314.
Hou, W. B.; Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612-1619.
Yun, J.; Hwang, S. H.; Jang, J. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 2055-2063.
Choi, Y.; Kim, H. I.; Moon, G. H.; Jo, S.; Choi, W. Boosting up the Low catalytic activity of silver for H2 production on Ag/TiO2 photocatalyst: Thiocyanate as a selective modifier. ACS Catal. 2016, 6, 821-828.
Zhang, J. M.; Jin, X.; Morales-Guzman, P. I.; Yu, X.; Liu, H.; Zhang, H.; Razzari, L.; Claverie, J. P. Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 2016, 10, 4496-4503.
Zhang, N.; Han, C.; Xu, Y. J.; Foley, J. J., IV; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics 2016, 10, 473-482.
Glaus, S.; Calzaferri, G. The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study. Photochem. Photobiol. Sci. 2003, 2, 398-401.
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.
Zhang, J. H.; Zhan, P.; Wang, Z. L.; Zhang, W. Y.; Ming, N. B. Preparation of monodisperse silica particles with controllable size and shape. J. Mater. Res. 2003, 18, 649-653.
Sousa-Castillo, A.; Comesaña-Hermo, M.; Rodríguez- González, B.; Pérez-Lorenzo, M.; Wang, Z. M.; Kong, X. T.; Govorov, A. O.; Correa-Duarte, M. A. Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au-TiO2 nanoarchitectures. J. Phys. Chem. C 2016, 120, 11690-11699.
Li, Z.; Okasinski, J. S.; Gosztola, D. J.; Ren, Y.; Sun, Y. G. Silver chlorobromide nanocubes with significantly improved uniformity: Synthesis and assembly into photonic crystals. J. Mater. Chem. C 2015, 3, 58-65.
Li, Z.; Gosztola, D. J.; Sun, C. J.; Heald, S. M.; Sun, Y. G. Exceptional enhancement of Raman scattering on silver chlorobromide nanocube photonic crystals: Chemical and photonic contributions. J. Mater. Chem. C 2015, 3, 2455-2461.
Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723-1732.