AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Predicting 2D silicon allotropes on SnS2

Emilio Scalise1( )Michel Houssa2
Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 Düsseldorf 40237 Germany
Semiconductor Physics Laboratory Department of Physics and Astronomy, University of LeuvenCelestijnenlaan 200 DLeuven B-3001 Belgium
Show Author Information

Graphical Abstract

Abstract

A first principles study on the stability and structural and electronic properties of two-dimensional silicon allotropes on a semiconducting layered metal-chalcogenide compound, namely SnS2, is performed. The interactions between the two- dimensional silicon layer, commonly known as silicene, and the layered SnS2 template are investigated by analyzing different configurations of silicene. The calculated thermodynamic phase diagram suggests that the most stable configuration of silicene on SnS2 belongs to a family of structures with Si atoms placed on three different planes; so-called dumbbell silicene. This particular dumbbell silicene structure preserves its atomic configuration on SnS2 even at a temperature of 500 K or as a "flake" layer (i.e., a silicene cluster terminated by H atoms), thanks to the weak interactions between the silicene and the SnS2 layers. Remarkably, an electric field can be used to tune the band gap of the silicene layer on SnS2, eventually changing its electronic behavior from semiconducting to (semi)metallic. The stability of silicene on SnS2 is very promising for the integration of silicene onto semiconducting or insulating substrates. The tunable electronic behavior of the silicene/SnS2 van der Walls heterostructure is very important not only for its use in future nanoelectronic devices, but also as a successful approach to engineering the bang-gap of layered SnS2, paving the way for the use of this layered compound in energy harvesting applications.

Electronic Supplementary Material

Download File(s)
nr-10-5-1697_ESM.pdf (1.3 MB)

References

1

Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916–14922.

2

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

3

Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

4

Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507–3511.

5

Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mater. 2012, 24, 5088–5093.

6

Enriquez, H.; Vizzini, S.; Kara, A.; Lalmi, B.; Oughaddou, H. Silicene structures on silver surfaces. J. Phys. : Condens. Matter 2012, 24, 314211.

7

Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Tsipas, P.; Dimoulas, A. Evidence for hybrid surface metallic band in (4×4) silicene on Ag(111). Appl. Phys. Lett. 2013, 103, 231604.

8

Moras, P.; Mentes, T. O.; Sheverdyaeva, P. M.; Locatelli, A.; Carbone, C. Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys. : Condens. Matter 2014, 26, 185001.

9

Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.

10

Lee, C. C.; Fleurence, A.; Yamada-Takamura, Y.; Ozaki, T.; Friedlein, R. Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si-atom Brillouin zone. Phys. Rev. B 2014, 90, 075422.

11

Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.

12

Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Two- dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.

13

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

14

Wang, Y.; Ding, Y. L. Electronic structures of silicene/GaS heterosheets. Appl. Phys. Lett. 2013, 103, 043114.

15

Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates. 2D Mater. 2014, 1, 011010.

16

Li, L. Y.; Zhao, M. W. Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 2014, 118, 19129–19138.

17

Gao, N.; Li, J. C.; Jiang, Q. Tunable band gaps in silicene– MoS2 heterobilayers. Phys. Chem. Chem. Phys. 2014, 16, 11673–11678.

18

Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

19

Houssa, M.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 2010, 97, 112106.

20

Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 2013, 15, 3702–3705.

21
Madelung, O.; Rössler, U.; Schulz, M. Non-Tetrahedrally Bonded Elements and Binary Compounds I; Springer: Berlin Heidelberg, 1998.https://doi.org/10.1007/b71138
22

Julien, C.; Eddrief, M.; Samaras, I.; Balkanski, M. Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals. Mater. Sci. Eng. B 1992, 15, 70–72.

23

Scalise, E.; Houssa, M.; Pourtois, G.; van den Broek, B.; Afanas'ev, V.; Stesmans, A. Vibrational properties of silicene and germanene. Nano Res. 2013, 6, 19–28.

24

Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

25

Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513.

26

Song, H. S.; Li, S. L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y. B.; Tsukagoshi, K. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 2013, 5, 9666–9670.

27

Seo, J. W.; Jang, J. T.; Park, S. W.; Kim, C.; Park, B.; Cheon, J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 2008, 20, 4269–4273.

28

Xia, J.; Zhu, D. D.; Wang, L.; Huang, B.; Huang, X.; Meng, X.-M. Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors. Adv. Funct. Mater. 2015, 25, 4255–4261.

29

Yang, Y.-B.; Dash, J. K.; Littlejohn, A. J.; Xiang, Y.; Wang, Y.; Shi, J.; Zhang, L. H.; Kisslinger, K.; Lu, T.-M.; Wang, G.-C. Large single crystal SnS2 flakes synthesized from coevaporation of Sn and S. Cryst. Growth Des. 2016, 16, 961–973.

30

Schlafa, R.; Armstrong, N. R.; Parkinson, B. A.; Pettenkofer, C.; Jaegermann, W. Van der Waals epitaxy of the layered semiconductors SnSe2 and SnS2: Morphology and growth modes. Surf. Sci. 1997, 385, 1–14.

31

Liu, Y. C.; Kang, H. Y.; Jiao, L. F.; Chen, C. C.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 2015, 7, 1325–1332.

32

Bialoglowski, M.; Jastrzebski, C.; Podsiadlo, S.; Jastrzebski, D. J.; Gajda, R.; Gebicki, W.; Wrzosek, P. A.; Wozniak, K. Synthesis of tin disulfide single crystals for nano-layer exfoliation. Cryst. Res. Technol. 2015, 50, 695–699.

33

Huang, Y. C.; Chen, X.; Zhou, D. M.; Liu, H.; Wang, C.; Du, J. Y.; Ning, L. X.; Wang, S. F. Stabilities, Electronic and optical properties of SnSe2(1–x)S2x alloys: A first-principles study. J. Phys. Chem. C 2016, 120, 5839–5847.

34

Cahangirov, S.; Özçelik, V. O.; Xian, L.; Avila, J.; Cho, S.; Asensio, M. C.; Ciraci, S.; Rubio, A. Atomic structure of the 3×3 phase of silicene on Ag(111). Phys. Rev. B 2014, 90, 035448.

35

Zhang, T.; Zeng, Z. Y.; Cheng, Y.; Chen, X. R.; Cai, L. C. Dumbbell silicene: A strain-induced room temperature quantum spin Hall insulator. New J. Phys. 2016, 18, 043001.

36

De Padova, P.; Vogt, P.; Resta, A.; Avila, J.; Razado-Colambo, I.; Quaresima, C.; Ottaviani, C.; Olivieri, B.; Bruhn, T.; Hirahara, T. et al. Evidence of Dirac fermions in multilayer silicene. Appl. Phys. Lett. 2013, 102, 163106.

37

Vogt, P.; Capiod, P.; Berthe, M.; Resta, A.; De Padova, P.; Bruhn, T.; Le Lay, G.; Grandidier, B. Synthesis and electrical conductivity of multilayer silicene. Appl. Phys. Lett. 2014, 104, 021602.

38

Langreth, D. C.; Dion, M.; Rydberg, H.; Schröder, E.; Hyldgaard, P.; Lundqvis, B. I. Van der Waals density functional theory with applications. Int. J. Quant. Chem. 2005, 101, 599–610.

39

Yuan, Y. K.; Quhe, R.; Zheng, J. X.; Wang, Y. Y.; Ni, Z. Y.; Shi, J. J.; Lu, J. Strong band hybridization between silicene and Ag(111) substrate. Phys. E 2014, 58, 38–42.

40

Cahangirov, S.; Audiffred, M.; Tang, P. Z.; Iacomino, A.; Duan, W. H.; Merino, G.; Rubio, A. Electronic structure of silicene on Ag(111): Strong hybridization effects. Phys. Rev. B 2013, 88, 035432.

41

Pflugradt, P.; Matthes, L.; Bechstedt, F. Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies. Phys. Rev. B 2014, 89, 035403.

42

Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

43

Li, S. S.; Zhang, C. W.; Yan, S. S.; Hu, S. J.; Ji, W. X.; Wang, P. J.; Li, P. Novel band structures in silicene on monolayer zinc sulfide substrate. J. Phys. : Condens. Matter 2014, 26, 395003.

44

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207.

45
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.https://doi.org/10.1063/1.2204597
46

Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

47

Hummer, K.; Harl, J.; Kresse, G. Heyd-Scuseria-Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors. Phys. Rev. B 2009, 80, 115205.

48

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

49

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

50

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

51
Medeiros, P. V. C.; Tsirkin, S. S.; Stafström, S.; Björk, J. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator. Phys. Rev. B 2015, 91, 041116(R).https://doi.org/10.1103/PhysRevB.91.041116
Nano Research
Pages 1697-1709
Cite this article:
Scalise E, Houssa M. Predicting 2D silicon allotropes on SnS2. Nano Research, 2017, 10(5): 1697-1709. https://doi.org/10.1007/s12274-016-1409-y
Part of a topical collection:

633

Views

10

Crossref

N/A

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 19 September 2016
Revised: 29 November 2016
Accepted: 05 December 2016
Published: 18 January 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return