Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
An alternative model to the well-established paradigm of the externally switchable drug delivery systems is herein proposed. In contrast to the on–off archetype, here the amount of released drug is pre-set by the application of an external stimulus, and is gradually released after the withdrawal of the exogenous signal. These attributes are achieved through an innovative approach featuring the integration of plasmonic nanovehicles in a polymer-based film. Such a platform is provided with optically responsive capabilities together with multiple diffusional barriers, allowing for an "on-demand" time-limited release where light acts as a therapeutic "starting shot". These nanoarchitectured depots have great potential as implantable drug delivery systems in clinical scenarios where a recurrent, sustained, and yet, on–off administration of medication is required. The application of these hybrid materials may extend the implementation of nanomedicine strategies beyond the point-of-care setting.
Gupta, M.; Agrawal, G. P.; Vyas, S. P. Polymeric nanomedicines as a promising vehicle for solid tumor therapy and targeting. Curr. Mol. Med. 2013, 13, 179-204.
Maeda, H.; Bharate, G. Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009, 71, 409-419.
Basile, L.; Pignatello, R.; Passirani, C. Active targeting strategies for anticancer drug nanocarriers. Curr. Drug Deliv. 2012, 9, 255-268.
De Souza, R.; Zahedi, P.; Allen, C. J.; Piquette-Miller, M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv. 2010, 17, 365-375.
Exner, A. A.; Saidel, G. M. Drug-eluting polymer implants in cancer therapy. Expert Opin. Drug Deliv. 2008, 5, 775-788.
Wolinsky, J. B.; Colson, Y. L.; Grinstaff, M. W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release 2012, 159, 14-26.
Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54, 3-12.
Calvert, P. Hydrogels for soft machines. Adv. Mater. 2009, 21, 743-756.
Williams, H. D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W. N.; Pouton, C. W.; Porter, C. J. H. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65, 315-499.
Huang, X.; Brazel, C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121-136.
Hoare, T. R.; Kohane, D. S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993-2007.
De Robertis, S.; Bonferoni, M. C.; Elviri, L.; Sandri, G.; Caramella, C.; Bettini, R. Advances in oral controlled drug delivery: The role of drug-polymer and interpolymer noncovalent interactions. Expert Opin. Drug Deliv. 2015, 12, 441-453.
Khandare, J.; Minko, T. Polymer-drug conjugates: Progress in polymeric prodrugs. Prog. Polym. Sci. 2006, 31, 359-397.
Aminabhavi, T. M.; Nadagouda, M. N.; More, U. A.; Joshi, S. D.; Kulkarni, V. H.; Noolvi, M. N.; Kulkarni, P. V. Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin. Drug Deliv. 2015, 12, 669-688.
Zhang, X. -Z.; Jo Lewis, P.; Chu, C. -C. Fabrication and characterization of a smart drug delivery system: Microsphere in hydrogel. Biomaterials 2005, 26, 3299-3309.
Mourtas, S.; Fotopoulou, S.; Duraj, S.; Sfika, V.; Tsakiroglou, C.; Antimisiaris, S. G. Liposomal drugs dispersed in hydrogels: Effect of liposome, drug and gel properties on drug release kinetics. Colloids Surf. B Biointerfaces 2007, 55, 212-221.
Wei, L.; Cai, C. H.; Lin, J. P.; Chen, T. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials 2009, 30, 2606-2613.
Josef, E.; Barat, K.; Barsht, I.; Zilberman, M.; Bianco-Peled, H. Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater. 2013, 9, 8815-8822.
Lynch, I.; Dawson, K. A. Synthesis and characterization of an extremely versatile structural motif called the "plum-pudding" gel. J. Phys. Chem. B 2003, 107, 9629-9637.
Lynch, I.; Dawson, K. A. Release of model compounds from "plum-pudding"-type gels composed of microgel particles randomly dispersed in a gel matrix. J. Phys. Chem. B 2004, 108, 10893-10898.
Satarkar, N. S.; Biswal, D.; Hilt, J. Z. Hydrogel nanocomposites: A review of applications as remote controlled biomaterials. Soft Matter. 2010, 6, 2364-2371.
Kikuchi, A.; Okano, T. Pulsatile drug release control using hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 53-77.
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321-339.
Vaz, B.; Salgueiriño, V.; Pérez-Lorenzo, M.; Correa-Duarte, M. A. Enhancing the exploitation of functional nanomaterials through spatial confinement: The case of inorganic submicrometer capsules. Langmuir 2015, 31, 8745-8755.
Jain, P. K.; El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010, 487, 153-164.
Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710-711.
Espinosa, A.; Silva, A. K. A.; Sánchez-Iglesias, A.; Grzelczak, M.; Péchoux, C.; Desboeufs, K.; Liz-Marzán, L. M.; Wilhelm, C. Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: Toward a plasmonic thermal fingerprint in tumoral environment. Adv. Healthc. Mater. 2016, 5, 1040-1048.
Topete, A.; Alatorre-Meda, M.; Villar-Alvarez, E. M.; Carregal-Romero, S.; Barbosa, S.; Parak, W. J.; Taboada, P.; Mosquera, V. Polymeric-gold nanohybrids for combined imaging and cancer therapy. Adv. Healthc. Mater. 2014, 3, 1309-1325.
Zhang, Y.; Hsu, B. Y. W.; Ren, C. L.; Li, X.; Wang, J. Silica-based nanocapsules: Synthesis, structure control and biomedical applications. Chem. Soc. Rev. 2015, 44, 315-335.
Ernawati, L.; Ogi, T.; Balgis, R.; Okuyama, K.; Stucki, M.; Hess, S. C.; Stark, W. J. Hollow silica as an optically transparent and thermally insulating polymer additive. Langmuir 2016, 32, 338-345.
Taylor, A. B.; Siddiquee, A. M.; Chon, J. W. M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano 2014, 8, 12071-12079.
Kim, K.; Jo, M. -C.; Jeong, S.; Palanikumar, L.; Rotello, V. M.; Ryu, J. -H.; Park, M. -H. Externally controlled drug release using a gold nanorod contained composite membrane. Nanoscale 2016, 8, 11949-11955.
Hribar, K. C.; Lee, M. H.; Lee, D.; Burdick, J. A. Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites. ACS Nano 2011, 5, 2948-2956.
Hoare, T.; Santamaria, J.; Goya, G. F.; Irusta, S.; Lin, D.; Lau, S.; Padera, R.; Langer, R.; Kohane, D. S. A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 2009, 9, 3651-3657.
Derfus, A. M.; von Maltzahn, G.; Harris, T. J.; Duza, T.; Vecchio, K. S.; Ruoslahti, E.; Bhatia, S. N. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 2007, 19, 3932-3936.
Shchukin, D. G.; Radtchenko, I. L.; Sukhorukov, G. B. Photoinduced reduction of silver inside microscale polyelectrolyte capsules. ChemPhysChem 2003, 4, 1101-1103.
Duff, D. G.; Baiker, A.; Edwards, P. P. A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 1993, 9, 2301-2309.
Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28-29.
Pham, T.; Jackson, J. B.; Halas, N. J.; Lee, T. R. Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 2002, 18, 4915-4920.