AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires

Minliang Lai1Qiao Kong1Connor G. Bischak1Yi Yu1,2Letian Dou1,2Samuel W. Eaton1Naomi S. Ginsberg1,2,3,4,5Peidong Yang1,2,3,6( )
Department of ChemistryUniversity of CaliforniaBerkeleyCalifornia94720USA
Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720USA
Kavli Energy Nanosciences InstituteBerkeleyCalifornia94720USA
Molecular Biophysics and Integrative Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720USA
Department of PhysicsUniversity of CaliforniaBerkeleyCalifornia94720USA
Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCalifornia94720USA
Show Author Information

Graphical Abstract

Abstract

Cesium lead iodide (CsPbI3), in its black perovskite phase, has a suitable bandgap and high quantum efficiency for photovoltaic applications. However, CsPbI3 tends to crystalize into a yellow non-perovskite phase, which has poor optoelectronic properties, at room temperature. Therefore, controlling the phase transition in CsPbI3 is critical for practical application of this material. Here we report a systematic study of the phase transition of one-dimensional CsPbI3 nanowires and their corresponding structural, optical, and electrical properties. We show the formation of perovskite black phase CsPbI3 nanowires from the non-perovskite yellow phase through rapid thermal quenching. Post-transformed black phase CsPbI3 nanowires exhibit increased photoluminescence emission intensity with a shrinking of the bandgap from 2.78 to 1.76 eV. The perovskite nanowires were photoconductive and showed a fast photoresponse and excellent stability at room temperature. These promising optical and electrical properties make the perovskite CsPbI3 nanowires attractive for a variety of nanoscale optoelectronic devices.

Electronic Supplementary Material

Download File(s)
nr-10-4-1107_ESM.pdf (2.4 MB)

References

1

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

2

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

3

Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. -H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

4

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

5

Niu, G. D.; Guo, X. D.; Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980.

6

Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500963.

7

Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477.

8

Philippe, B.; Park, B. W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures? A photoelectron spectroscopy investigation. Chem. Mater. 2015, 27, 1720–1731.

9

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

10

Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.

11

Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L. -W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.

12

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

13

Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746–751.

14

Møller, C. K. Crystal structure and photoconductivity of cæsium plumbohalides. Nature 1958, 182, 1436.

15

Natarajan, M.; Prakash, B. Phase transitions in ABX3 type halides. Phys. Status Solidi A Appl. Res. 1971, 4, K167–K172.

16

Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.

17

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

18

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

19

Dastidar, S.; Egger, D. A.; Tan, L. Z.; Cromer, S. B.; Dillon, A. D.; Liu, S.; Kronik, L.; Rappe, A. M.; Fafarman, A. T. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 2016, 16, 3563–3570.

20

Krumhansl, J. A.; Schrieffer, J. R. Dynamics and statistical mechanics of a one-dimensional model hamiltonian for structural phase transitions. Phys. Rev. B 1975, 11, 3535–3545.

21

Gu, Q.; Falk, A.; Wu, J. Q.; Ouyang, L.; Park, H. Currentdriven phase oscillation and domain-wall propagation in WxV1-x O2 nanobeams. Nano Lett. 2007, 7, 363–366.

22

Liu, W.; Pan, W.; Luo, J.; Godfrey, A.; Ou, G.; Wu, H.; Zhang, W. Suppressed phase transition and giant ionic conductivity in La2Mo2O9 nanowires. Nat. Commun. 2015, 6, 8354.

23

Campbell, M. G.; Powers, D. C.; Raynaud, J.; Graham, M. J.; Xie, P.; Lee, E.; Ritter, T. Synthesis and structure of solution-stable one-dimensional palladium wires. Nat. Chem. 2011, 3, 949–953.

24

Trots, D. M.; Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 2008, 69, 2520–2526.

25

Stoumpos, C. C.; Kanatzidis, M. G. The Renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 2015, 48, 2791–2802.

26

Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963-7972.

27

Wang, Y. L.; Guan, X.; Li, D. H.; Cheng, H. -C.; Duan, X. D.; Lin, Z. Y.; Duan, X. F. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. , in press, DOI: 10.1007/s12274-016-1317-1.

28

Trigui, A.; Abid, H.; Mlayah, A.; Abid, Y. Optical properties and vibrational studies of a new self assembled organic– inorganic nanowire crystal (C6H13N3)2Pb3I10. Synth. Met. 2012, 162, 1731–1736.

29

Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096.

30

Bischak, C. G.; Sanehira, E. M.; Precht, J. T.; Luther, J. M.; Ginsberg, N. S. Heterogeneous charge carrier dynamics in organic-inorganic hybrid materials: Nanoscale lateral and depth-dependent variation of recombination rates in methylammonium lead halide perovskite thin films. Nano Lett. 2015, 15, 4799–4807.

31

Li, D. H.; Wang, G. M.; Cheng, H. C.; Chen, C. Y.; Wu, H.; Liu, Y.; Duan, X. F. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 2016, 7, 11330.

32

Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

33

Grote, C.; Berger, R. F. Strain tuning of tin-halide and lead- halide perovskites: A first-principles atomic and electronic structure study. J. Phys. Chem. C 2015, 119, 22832–22837.

34

Zhang, H. Z.; Banfield, J. F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 1998, 8, 2073–2076.

35

Hegedüs, J.; Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nat. Mater. 2008, 7, 399–405.

36

Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. P. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732.

37

Li, P. N.; Yang, X. S.; Maß, T. W. W.; Hanss, J. L.; Lewin, M.; Michel, A. -K. U.; Wuttig, M.; Taubner, T. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 2016, 15, 870– 875.

Nano Research
Pages 1107-1114
Cite this article:
Lai M, Kong Q, Bischak CG, et al. Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires. Nano Research, 2017, 10(4): 1107-1114. https://doi.org/10.1007/s12274-016-1415-0
Part of a topical collection:

916

Views

130

Crossref

N/A

Web of Science

130

Scopus

8

CSCD

Altmetrics

Received: 07 November 2016
Revised: 10 December 2016
Accepted: 12 December 2016
Published: 20 February 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return