Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Selective hydrogenation is an important industrial catalytic process in chemical upgrading, where Pd-based catalysts are widely used because of their high hydrogenation activities. However, poor selectivity and short catalyst lifetime because of heavy coke formation have been major concerns. In this work, atomically dispersed Pd atoms were successfully synthesized on graphitic carbon nitride (g-C3N4) using atomic layer deposition. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) confirmed the dominant presence of isolated Pd atoms without Pd nanoparticle (NP) formation. During selective hydrogenation of acetylene in excess ethylene, the g-C3N4-supported Pd NP catalysts had strikingly higher ethylene selectivities than the conventional Pd/Al2O3 and Pd/SiO2 catalysts. In-situ X-ray photoemission spectroscopy revealed that the considerable charge transfer from the Pd NPs to g-C3N4 likely plays an important role in the catalytic performance enhancement. More impressively, the single-atom Pd1/C3N4 catalyst exhibited both higher ethylene selectivity and higher coking resistance. Our work demonstrates that the single-atom Pd catalyst is a promising candidate for improving both selectivity and coking-resistance in hydrogenation reactions.
Argyle, M. D.; Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145-269.
Barbier, J. Deactivation of reforming catalysts by coking— A review. Appl. Catal. 1986, 23, 225-243.
Borodziński, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. 2006, 48, 91-144.
Bos, A. N. R.; Westerterp, K. R. Mechanism and kinetics of the selective hydrogenation of ethyne and ethene. Chem. Eng. Process. 1993, 32, 1-7.
Schbib, N. S.; García, M. A.; Gígola, C. E.; Errazu, A. F. Kinetics of front-end acetylene hydrogenation in ethylene production. Ind. Eng. Chem. Res. 1996, 35, 1496-1505.
Zhang, Q. W.; Li, J.; Liu, X. X.; Zhu, Q. M. Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Appl. Catal. A: Gen. 2000, 197, 221-228.
Osswald, J.; Giedigkeit, R.; Jentoft, R.; Armbruster, M.; Girgsdies, F.; Kovnir, K.; Ressler, T.; Grin, Y.; Schlogl, R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions. J. Catal. 2008, 258, 210-218.
Crabb, E. M.; Marshall, R. Properties of alumina supported Pd-Fe and Pt-Fe catalysts prepared using surface organometallic chemistry. Appl. Catal. A: Gen. 2001, 217, 41-53.
El Kolli, N.; Delannoy, L.; Louis, C. Bimetallic Au-Pd catalysts for selective hydrogenation of butadiene: Influence of the preparation method on catalytic properties. J. Catal. 2013, 297, 79-92.
Hou, R. J.; Ye, W. T.; Porosoff, M. D.; Chen, J. G.; Wang, T. F. Selective hydrogenation of 1, 3-butadiene on Pd-Ni bimetallic catalyst: From model surfaces to supported catalysts. J. Catal. 2014, 316, 1-10.
Verdier, S.; Didillon, B.; Morin, S.; Uzio, D. Pd-Sn/Al2O3 catalysts from colloidal oxide synthesis: Ⅱ. Surface characterization and catalytic properties for buta-1, 3-diene selective hydrogenation. J. Catal. 2003, 218, 288-295.
Sarkany, A.; Zsoldos, Z.; Stefler, G.; Hightower, J. W.; Guczi, L. Promoter effect of Pd in hydrogenation of 1, 3-butadiene over Co-Pd catalysts. J. Catal. 1995, 157, 179-189.
Goetz, J.; Volpe, M. A.; Gigola, C. E.; Touroude, R. Low- loaded Pd-Pb/α-Al2O3 catalysts: Effect of alloying in the hydrogenation of buta-1, 3-diene and hydrogenation and isomerization of butenes. J. Catal. 2001, 199, 338-345.
Pattamakomsan, K.; Ehret, E.; Morfin, F.; Gélin, P.; Jugnet, Y.; Prakash, S.; Bertolini, J. C.; Panpranot, J.; Aires, F. J. C. S. Selective hydrogenation of 1, 3-butadiene over Pd and Pd-Sn catalysts supported on different phases of alumina. Catal. Today 2011, 164, 28-33.
Lee, D. C.; Kim, J. H.; Kim, W. J.; Kang, J. H.; Moon, S. H. Selective hydrogenation of 1, 3-butadiene on TiO2-modified Pd/SiO2 catalysts. Appl. Catal. A: Gen. 2003, 244, 83-91.
Yi, H.; Du, H. Y.; Hu, Y. L.; Yan, H.; Jiang, H. L.; Lu, J. L. Precisely controlled porous alumina overcoating on Pd catalyst by atomic layer deposition: Enhanced selectivity and durability in hydrogenation of 1, 3-butadiene. ACS Catal. 2015, 5, 2735-2739.
Ding, L. B.; Yi, H.; Zhang, W. H.; You, R.; Cao, T.; Yang, J. L.; Lu, J. L.; Huang, W. X. Activating edge sites on Pd catalysts for selective hydrogenation of acetylene via selective Ga2O3 decoration. ACS Catal. 2016, 6, 3700-3707.
Kang, J. H.; Shin, E. W.; Kim, W. J.; Park, J. D.; Moon, S. H. Selective hydrogenation of acetylene on Pd/SiO2 catalysts promoted with Ti, Nb and Ce oxides. Catal. Today 2000, 63, 183-188.
Boucher, M. B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M. D.; Lawton, T. J.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys. Chem. Chem. Phys. 2013, 15, 12187-12196.
Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani- Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209-1212.
Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Li, L.; Huang, Y. Q.; Zhang, T.; Lee, J. W.; Jang, B. W. L.; Mou, C. -Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J. Chem. 2014, 38, 2043-2051.
Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717-3725.
Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054-1061.
Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265-11269.
Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484-10487.
Benavidez, A. D.; Burton, P. D.; Nogales, J. L.; Jenkins, A. R.; Ivanov, S. A.; Miller, J. T.; Karim, A. M.; Datye, A. K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Appl. Catal. A: Gen. 2014, 482, 108-115.
Komhom, S.; Mekasuwandumrong, O.; Praserthdam, P.; Panpranot, J. Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catal. Commun. 2008, 10, 86-91.
Cervantes, G. G.; Aires, F. J. C. S.; Bertolini, J. C. Compared properties of Pd on thermo-conductor supports (SiC, Si3N4) and Pd on oxide supports (Al2O3, SiO2) for the 1, 3-butadiene hydrogenation reaction. J. Catal. 2003, 214, 26-32.
Wang, X. C.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012, 2, 1596-1606.
Gong, Y. T.; Li, M. M.; Li, H. R.; Wang, Y. Graphitic carbon nitride polymers: Promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 2015, 17, 715-736.
Lu, J. L.; Elam, J. W.; Stair, P. C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 2013, 46, 1806-1815.
Suntola, T.; Hyvarinen, J. Atomic layer epitaxy. Annu. Rev. Mater. Sci. 1985, 15, 177-195.
Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.
Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745-2751.
Lu, J. L.; Stair, P. C. Nano/subnanometer Pd nanoparticles on oxide supports synthesized by AB-type and low-temperature ABC-type atomic layer deposition: Growth and morphology. Langmuir 2010, 26, 16486-16495.
Elam, J. W.; Zinovev, A.; Han, C. Y.; Wang, H. H.; Welp, U.; Hryn, J. N.; Pellin, M. J. Atomic layer deposition of palladium films on Al2O3 surfaces. Thin Solid Films 2006, 515, 1664-1673.
Wang, H. W.; Wang, C. L.; Yan, H.; Yi, H.; Lu, J. L. Precisely-controlled synthesis of Au@Pd core-shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. J. Catal. 2015, 324, 59-68.
Chen, B. R.; George, C.; Lin, Y. Y.; Hu, L. H.; Crosby, L.; Hu, X. Y.; Stair, P. C.; Marks, L. D.; Poeppelmeier, K. R.; Van Duyne, R. P. et al. Morphology and oxidation state of ALD-grown Pd nanoparticles on TiO2- and SrO-terminated SrTiO3 nanocuboids. Surf. Sci. 2016, 648, 291-298.
Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292-6297.
Lei, Y.; Lu, J.; Luo, X. Y.; Wu, T. P.; Du, P.; Zhang, X. Y.; Ren, Y.; Wen, J. G.; Miller, D. J.; Miller, J. T. et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium-O2 battery. Nano Lett. 2013, 13, 4182-4189.
Gong, T.; Qin, L. J.; Zhang, W.; Wan, H.; Lu, J.; Feng, H. Activated carbon supported palladium nanoparticle catalysts synthesized by atomic layer deposition: Genesis and evolution of nanoparticles and tuning the particle size. J. Phys. Chem. C 2015, 119, 11544-11556.
Zhou, W. J.; Lee, J. Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid. J. Phys. Chem. C 2008, 112, 3789-3793.
Tay, Q.; Kanhere, P.; Ng, C. F.; Chen, S.; Chakraborty, S.; Huan, A. C. H.; Sum, T. C.; Ahuja, R.; Chen, Z. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem. Mater. 2015, 27, 4930-4933.
Zemlyanov, D.; Aszalos-Kiss, B.; Kleimenov, E.; Teschner, D.; Zafeiratos, S.; Hävecker, M.; Knop-Gericke, A.; Schlogl, R.; Gabasch, H.; Unterberger, W. et al. In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10−3 mbar O2. Surf. Sci. 2006, 600, 983-994.
Zhou, Y. K.; Pasquarelli, R.; Holme, T.; Berry, J.; Ginley, D.; O'Hayre, R. Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports: Observations from model Pt/HOPG systems. J. Mater. Chem. 2009, 19, 7830-7838.
Jia, L. J.; Bulushev, D. A.; Podyacheva, O. Y.; Boronin, A. I.; Kibis, L. S.; Gerasimov, E. Y.; Beloshapkin, S.; Seryak, I. A.; Ismagilov, Z. R.; Ross, J. R. H. Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid. J. Catal. 2013, 307, 94-102.
Wang, Q. J.; Che, J. G. Origins of distinctly different behaviors of Pd and Pt contacts on graphene. Phys. Rev. Lett. 2009, 103, 066802.
Zhang, W. Y.; Huang, H. J.; Li, F.; Deng, K. M.; Wang, X. Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation. J. Mater. Chem. A 2014, 2, 19084-19094.
Noupa, C.; Rousset, J. L.; Tardy, B.; Bertolini, J. C. Sizeable deactivation effect for the 1, 3-butadiene hydrogenation on vapor-deposited Pd aggregates on graphite. Catal. Lett. 1993, 22, 197-203.
Silvestre-Albero, J.; Rupprechter, G.; Freund, H. J. Atmospheric pressure studies of selective 1, 3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts: Effect of Pd particle size. J. Catal. 2006, 240, 58-65.
Binder, A.; Seipenbusch, M.; Muhler, M.; Kasper, G. Kinetics and particle size effects in ethene hydrogenation over supported palladium catalysts at atmospheric pressure. J. Catal. 2009, 268, 150-155.
Borodzinski, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal. Rev. 2008, 50, 379-469.
Kang, J. H.; Shin, E. W.; Kim, W. J.; Park, J. D.; Moon, S. H. Selective hydrogenation of acetylene on TiO2-added Pd catalysts. J. Catal. 2002, 208, 310-320.
Sandell, A.; Beutler, A.; Jaworowski, A.; Wiklund, M.; Heister, K.; Nyholm, R.; Andersen, J. N. Adsorption of acetylene and hydrogen on Pd(111): Formation of a well- ordered ethylidyne overlayer. Surf. Sci. 1998, 415, 411-422.
Borodziński, A. Hydrogenation of acetylene-ethylene mixtures on a commercial palladium catalyst. Catal. Lett. 1999, 63, 35-42.
Ouyang, R. H.; Liu, J. X.; Li, W. X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760-1771.