Graphical Abstract

Electrochemical potassium ion intercalation into two-dimensional layered MoS2 was studied for the first time for potential applications in the anode in potassium-based batteries. X-ray diffraction analysis indicated that an intercalated potassium compound, hexagonal K0.4MoS2, formed during the intercalation process. Despite the size of K+, MoS2 was a long-life host for repetitive potassium ion intercalation and de-intercalation with a capacity retention of 97.5% after 200 cycles. The diffusion coefficient of the K+ ions in KxMoS2 was calculated based on the Randles-Sevcik equation. A higher K+ intercalation ratio not only encountered a much slower K+ diffusion rate in MoS2, but also induced MoS2 reduction. This study shows that metal dichalcogenides are promising potassium anode materials for emerging K-ion, K-O2, and K-S batteries.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
Tarascon, J. -M. Is lithium the new gold? Nat. Chem. 2010, 2, 510.
Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-3613.
Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A high- rate and long cycle life aqueous electrolyte battery for grid- scale energy storage. Nat. Commun. 2012, 3, 1149.
Carbajales-Dale, M.; Barnhart, C. J.; Benson, S. M. Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage. Energy Environ. Sci. 2014, 7, 1538-1544.
Kim, Y.; Ha, K. -H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. —Eur. J. 2014, 20, 11980-11992.
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.
Hartmann, P.; Bender, C. L.; Vračar, M.; Dürr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. A rechargeable room- temperature sodium superoxide (NaO2) battery. Nat. Mater. 2013, 12, 228-232.
Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.
Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.
Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V.; et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671-7677.
Ren, X. D.; Wu, Y. Y. A low-overpotential potassium- oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 2013, 135, 2923-2926.
Zhao, Q.; Hu, Y. X.; Zhang, K.; Chen, J. Potassium-sulfur batteries: A new member of room-temperature rechargeable metal-sulfur batteries. Inorg. Chem. 2014, 53, 9000-9005.
Vardar, G.; Nelson, E. G.; Smith, J. G.; Naruse, J.; Hiramatsu, H.; Bartlett, B. M.; Sleightholme, A. E. S.; Siegel, D. J.; Monroe, C. W. Identifying the discharge product and reaction pathway for a secondary Mg/O2 battery. Chem. Mater. 2015, 27, 7564−7568.
Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291-1311.
Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/ high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172-175.
Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Oakes, L.; Pint, C. L. Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. J. Mater. Chem. A 2016, 4, 14954-14959.
Han, J.; Xu, M. W.; Niu, Y. B.; Li, G. -N.; Wang, M. Q.; Zhang, Y.; Jia, M.; Li, C. M. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 2016, 52, 11274-11276.
Kishore, B.; Venkatesh, G.; Munichandraiah, N. K2Ti4O9: A promising anode material for potassium ion batteries. J. Electrochem. Soc. 2016, 163, A2551-A2554.
Ju, Z. C.; Zhang, S.; Xing, Z.; Zhuang, Q. C.; Qiang, Y. H.; Qian, Y. T. Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Interfaces 2016, 8, 20682-20690.
McCulloch, W. D.; Ren, X. D.; Yu, M. Z.; Huang, Z. J.; Wu, Y. Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Interfaces 2015, 7, 26158-26166.
Zhao, J.; Zou, X. X.; Zhu, Y. J.; Xu, Y. H.; Wang, C. S. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103-8110.
Pumera, M.; Sofer, Z.; Ambrosi, A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2, 8981-8987.
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693-6697.
Hu, Z.; Liu, Q. N.; Sun, W. Y.; Li, W. J.; Tao, Z. L.; Chou, S. L.; Chen, J.; Dou, S. X. MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorg. Chem. Front. 2016, 3, 532-535.
Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.
David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759-1770.
Zhang, R.; Tsai, I. -L.; Chapman, J.; Khestanova, E.; Waters, J.; Grigorieva, I. V. Superconductivity in potassium-doped metallic polymorphs of MoS2. Nano Lett. 2016, 16, 629-636.
Somoano, R. B.; Hadek, V.; Rembaum, A. Alkali metal intercalates of molybdenum disulfide. J. Chem. Phys. 1973, 58, 697-701.
Zak, A.; Feldman, Y.; Lyakhovitskaya, V.; Leitus, G.; Popovitz- Biro, R.; Wachtel, E.; Cohen, H.; Reich, S.; Tenne, R. Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 2002, 124, 4747-4758.
Pistoia, G. Nonaqueous batteries with LiClO4-ethylene carbonate as electrolyte. J. Electrochem. Soc. 1971, 118, 153-158.
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303-4418.
Fang, X. P.; Hua, C. X.; Guo, X. W.; Hu, Y. S.; Wang, Z. X.; Gao, X. P.; Wu, F.; Wang, J. Z.; Chen, L. Q. Lithium storage in commercial MoS2 in different potential ranges. Electrochim. Acta 2012, 81, 155-160.
Wang, X. F.; Shen, X.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394-11400.
Yu, D. Y. W.; Fietzek, C.; Weydanz, W.; Donoue, K.; Inoue, T.; Kurokawa, H.; Fujitani, S. Study of LiFePO4 by cyclic voltammetry. J. Electrochem. Soc. 2007, 154, A253-A257.
Santa-Ana, M. A.; Sanchez, V.; Gonzalez, G. Temperature effects on the diffusion of lithium in MoS2. Electrochim. Acta 1995, 40, 1773-1775.
Li, Y. F.; Liang, Y. L.; Robles Hernandez, F. C.; Deog Yoo, H.; An, Q. Y.; Yao, Y. Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 2015, 15, 453-461.