Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

MoS2 as a long-life host material for potassium ion intercalation

Xiaodi RenQiang ZhaoWilliam D. McCullochYiying Wu()
Department of Chemistry and BiochemistryThe Ohio State University, 151 W Woodruff AveColumbus, OH43210USA

Present address: College of Chemical Engineering, Sichuan University, Chengdu 610065, China

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Electrochemical potassium ion intercalation into two-dimensional layered MoS2 was studied for the first time for potential applications in the anode in potassium-based batteries. X-ray diffraction analysis indicated that an intercalated potassium compound, hexagonal K0.4MoS2, formed during the intercalation process. Despite the size of K+, MoS2 was a long-life host for repetitive potassium ion intercalation and de-intercalation with a capacity retention of 97.5% after 200 cycles. The diffusion coefficient of the K+ ions in KxMoS2 was calculated based on the Randles-Sevcik equation. A higher K+ intercalation ratio not only encountered a much slower K+ diffusion rate in MoS2, but also induced MoS2 reduction. This study shows that metal dichalcogenides are promising potassium anode materials for emerging K-ion, K-O2, and K-S batteries.

Electronic Supplementary Material

Download File(s)
nr-10-4-1313_ESM.pdf (912.9 KB)

References

1

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

2

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

3

Tarascon, J. -M. Is lithium the new gold? Nat. Chem. 2010, 2, 510.

4

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-3613.

5

Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A high- rate and long cycle life aqueous electrolyte battery for grid- scale energy storage. Nat. Commun. 2012, 3, 1149.

6

Carbajales-Dale, M.; Barnhart, C. J.; Benson, S. M. Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage. Energy Environ. Sci. 2014, 7, 1538-1544.

7

Kim, Y.; Ha, K. -H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. —Eur. J. 2014, 20, 11980-11992.

8

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.

9

Hartmann, P.; Bender, C. L.; Vračar, M.; Dürr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. A rechargeable room- temperature sodium superoxide (NaO2) battery. Nat. Mater. 2013, 12, 228-232.

10

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.

11

Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

12

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V.; et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671-7677.

13

Ren, X. D.; Wu, Y. Y. A low-overpotential potassium- oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 2013, 135, 2923-2926.

14

Zhao, Q.; Hu, Y. X.; Zhang, K.; Chen, J. Potassium-sulfur batteries: A new member of room-temperature rechargeable metal-sulfur batteries. Inorg. Chem. 2014, 53, 9000-9005.

15
Eftekhari, A.; Jian, Z. L.; Ji, X. L. Potassium secondary batteries. ACS Appl. Mater. Interfaces, in press, DOI: 10.1021/acsami.6b07989.https://doi.org/10.1021/acsami.6b07989
16

Vardar, G.; Nelson, E. G.; Smith, J. G.; Naruse, J.; Hiramatsu, H.; Bartlett, B. M.; Sleightholme, A. E. S.; Siegel, D. J.; Monroe, C. W. Identifying the discharge product and reaction pathway for a secondary Mg/O2 battery. Chem. Mater. 2015, 27, 7564−7568.

17

Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291-1311.

18

Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/ high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172-175.

19

Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Oakes, L.; Pint, C. L. Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. J. Mater. Chem. A 2016, 4, 14954-14959.

20

Han, J.; Xu, M. W.; Niu, Y. B.; Li, G. -N.; Wang, M. Q.; Zhang, Y.; Jia, M.; Li, C. M. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 2016, 52, 11274-11276.

21

Kishore, B.; Venkatesh, G.; Munichandraiah, N. K2Ti4O9: A promising anode material for potassium ion batteries. J. Electrochem. Soc. 2016, 163, A2551-A2554.

22

Ju, Z. C.; Zhang, S.; Xing, Z.; Zhuang, Q. C.; Qiang, Y. H.; Qian, Y. T. Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Interfaces 2016, 8, 20682-20690.

23
Xing, Z. Y.; Qi, Y. T.; Jian, Z. L.; Ji, X. L. Polynanocrystalline graphite: A new carbon anode with superior cycling performance for K-ion batteries. ACS Appl. Mater. Interfaces, in press, DOI: 10.1021/acsami.6b06767.https://doi.org/10.1021/acsami.6b06767
24

McCulloch, W. D.; Ren, X. D.; Yu, M. Z.; Huang, Z. J.; Wu, Y. Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Interfaces 2015, 7, 26158-26166.

25
Xiao, N.; Ren, X. D.; He, M. F.; McCulloch, W. D.; Wu, Y. Y. Probing mechanisms for inverse correlation between rate performance and capacity in K-O2 batteries. ACS Appl. Mater. Interfaces, in press, DOI: 10.1021/acsami.6b06280.https://doi.org/10.1021/acsami.6b06280
26

Zhao, J.; Zou, X. X.; Zhu, Y. J.; Xu, Y. H.; Wang, C. S. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103-8110.

27

Pumera, M.; Sofer, Z.; Ambrosi, A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2, 8981-8987.

28

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

29

Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693-6697.

30

Hu, Z.; Liu, Q. N.; Sun, W. Y.; Li, W. J.; Tao, Z. L.; Chou, S. L.; Chen, J.; Dou, S. X. MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorg. Chem. Front. 2016, 3, 532-535.

31

Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.

32

David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759-1770.

33

Zhang, R.; Tsai, I. -L.; Chapman, J.; Khestanova, E.; Waters, J.; Grigorieva, I. V. Superconductivity in potassium-doped metallic polymorphs of MoS2. Nano Lett. 2016, 16, 629-636.

34

Somoano, R. B.; Hadek, V.; Rembaum, A. Alkali metal intercalates of molybdenum disulfide. J. Chem. Phys. 1973, 58, 697-701.

35

Zak, A.; Feldman, Y.; Lyakhovitskaya, V.; Leitus, G.; Popovitz- Biro, R.; Wachtel, E.; Cohen, H.; Reich, S.; Tenne, R. Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 2002, 124, 4747-4758.

36

Pistoia, G. Nonaqueous batteries with LiClO4-ethylene carbonate as electrolyte. J. Electrochem. Soc. 1971, 118, 153-158.

37

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303-4418.

38

Fang, X. P.; Hua, C. X.; Guo, X. W.; Hu, Y. S.; Wang, Z. X.; Gao, X. P.; Wu, F.; Wang, J. Z.; Chen, L. Q. Lithium storage in commercial MoS2 in different potential ranges. Electrochim. Acta 2012, 81, 155-160.

39

Wang, X. F.; Shen, X.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394-11400.

40

Yu, D. Y. W.; Fietzek, C.; Weydanz, W.; Donoue, K.; Inoue, T.; Kurokawa, H.; Fujitani, S. Study of LiFePO4 by cyclic voltammetry. J. Electrochem. Soc. 2007, 154, A253-A257.

41
Kumar, A.; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J.; Singh, M. K.; Majumder, S. B.; Tomar, M. S.; Katiyar, R. S. Structural and electrochemical characterization of pure LiFePO4 and nanocomposite C-LiFePO4 cathodes for lithium ion rechargeable batteries. J. Nanotechnol. 2009, 2009, Article ID 176517.https://doi.org/10.1155/2009/176517
42

Santa-Ana, M. A.; Sanchez, V.; Gonzalez, G. Temperature effects on the diffusion of lithium in MoS2. Electrochim. Acta 1995, 40, 1773-1775.

43

Li, Y. F.; Liang, Y. L.; Robles Hernandez, F. C.; Deog Yoo, H.; An, Q. Y.; Yao, Y. Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 2015, 15, 453-461.

Nano Research
Pages 1313-1321
Cite this article:
Ren X, Zhao Q, McCulloch WD, et al. MoS2 as a long-life host material for potassium ion intercalation. Nano Research, 2017, 10(4): 1313-1321. https://doi.org/10.1007/s12274-016-1419-9
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return