AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions

Suqin Li§Zhiwei Wang§Xiaoshan WangFangfang SunKai GaoNingxian HaoZhipeng ZhangZhongyuan MaHai LiXiao Huang( )Wei Huang( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University30 South Puzhu Road, Nanjing 211816 China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Creating pores in suprastructures of two-dimensional (2D) materials while controlling the orientation of the 2D building blocks is important in achieving large specific surface areas and tuning the anisotropic properties of the obtained functional hierarchical structures. In this contribution, we report that arranging graphitic carbon nitride (g-C3N4) nanosheets into one-dimensional (1D) architectures with controlled orientation has been achieved by using 1D oriented melem hydrate fibers as the synthetic precursor via a polycondensation process, during which the removal of water molecules and release of ammonia gas led to the creation of pores without destroying the 1D morphology of the oriented structures. The resulting porous g-C3N4 fibers with both meso- and micro-sized pores and largely exposed edges exhibited good sensing sensitivity and selectivity towards NO2. The sensing performance was further improved by hybridization of the porous fibers with Au nanoparticles (Au NPs), leading to a detection limit of 60 ppb under ambient conditions. Our results suggest that the highly porous g-C3N4 fibers and the related hybrid structures with largely exposed graphitic layer edges are excellent sensing platforms and may also show promise in other electronic and electrochemical applications.

Electronic Supplementary Material

Download File(s)
nr-10-5-1710_ESM.pdf (2 MB)

References

1

Zhou, Z. X.; Wang, J. H.; Yu, J. C.; Shen, Y. F.; Li, Y.; Liu, A. R.; Liu, S. Q.; Zhang, Y. J. Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J. Am. Chem. Soc. 2015, 137, 2179–2182.

2

Zhang, J. S.; Zhang, M. W.; Lin, L. H.; Wang, X. C. Sol processing of conjugated carbon nitride powders for thin- film fabrication. Angew. Chem., Int. Ed. 2015, 54, 6297–6301.

3

Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

4

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

5

Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

6

Bai, X. J.; Wang, L.; Zong, R. L.; Zhu, Y. F. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 2013, 117, 9952–9961.

7

Holst, J. R.; Gillan, G. E. From triazines to heptazines: Deciphering the local structure of amorphous nitrogen-rich carbon nitride materials. J. Am. Chem. Soc. 2008, 130, 7373– 7379.

8

Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater. 2016, 6, 1601273.

9

Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190.

10

Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68–89.

11

Zheng, Y.; Lin, L. H.; Ye, X. J.; Guo, F. S.; Wang, X. C. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem., Int. Ed. 2014, 53, 11926–11930.

12

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

13

Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362–2365.

14

Lau, V. W. H.; Mesch, M. B.; Duppel, V.; Blum, V.; Senker, J.; Lotsch, B. V. Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 1064–1072.

15

Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121.

16

Zhang, H. Q.; Huang, Y. H.; Hu, S. R.; Huang, Q. T.; Wei, C.; Zhang, W. X.; Kang, L. P.; Huang, Z. Y.; Hao, A. Y. Fluorescent probes for "off–on" sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets. J. Mater. Chem. C 2015, 3, 2093–2100.

17

Rong, M. C.; Lin, L. P.; Song, X. H.; Wang, Y. R.; Zhong, Y. X.; Yan, J. W.; Feng, Y. F.; Zeng, X. Y.; Chen, X. Fluorescence sensing of chromium (Ⅵ) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent "switch". Biosens. Bioelectron. 2015, 68, 210–217.

18

Zelisko, M.; Hanlumyuang, Y.; Yang, S. B.; Liu, Y. M.; Lei, C. H.; Li, J. Y.; Ajayan, P. M.; Sharma, P. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 2014, 5, 4284.

19

Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792.

20

Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/ carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

21

Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 20116–20119.

22

Zheng, D. D.; Pang, C. Y.; Liu, Y. X.; Wang, X. C. Shell- engineering of hollow g-C3N4 nanospheres via copoly­merization for photocatalytic hydrogen evolution. Chem. Commun. 2015, 51, 9706–9709.

23

Zhao, Z. K.; Dai, Y. T.; Li, J. H.; Wang, G. R. Highly-ordered mesoporous carbon nitride with ultrahigh surface area and pore volume as a superior dehydrogenation catalyst. Chem. Mater. 2014, 26, 3151–3161.

24

Hu, M.; Reboul, J.; Furukawa, S.; Radhakrishnan, L.; Zhang, Y. J.; Srinivasu, P.; Iwai, H.; Wang, H. J.; Nemoto, Y.; Suzuki, N. et al. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chem. Commun. 2011, 47, 8124–8126.

25

Liang, Q. H.; Ye, L.; Xu, Q.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon 2015, 94, 342–348.

26

Zhai, H. S.; Cao, L.; Xia, X. H. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin. Chem. Lett. 2013, 24, 103–106.

27

Dong, F.; Ou, M. Y.; Jiang, Y. K.; Guo, S.; Wu, Z. B. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind. Eng. Chem. Res. 2014, 53, 2318–2330.

28

Kailasam, K.; Epping, J. D.; Thomas, A.; Losse, S.; Junge, H. Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ. Sci. 2011, 4, 4668–4674.

29

Kim, J. S.; Yoo, H. W.; Choi, H. O.; Jung, H. T. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 2014, 14, 5941–5947.

30

Kim, K.; Lee, H. B. R.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M. G.; Pang, C.; Ahn, C.; Bent, S. F.; Bao, Z. N. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 2014, 5, 4781.

31

Kulkarni, G. S.; Reddy, K.; Zhong, Z. H.; Fan, X. D. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 2014, 5, 4376.

32

Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.

33

Cho, S. Y.; Yoo, H. W.; Kim, J. Y.; Jung, W. B.; Jin, M. L.; Kim, J. S.; Jeon, H. J.; Jung, H. T. High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett. 2016, 16, 4508–4515.

34

Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride "reloaded": Emerging applications beyond (photo) catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326.

35

Zhang, Y. F.; Bo, X. J.; Nsabimana, A.; Luhana, C.; Wang, G.; Wang, H.; Li, M.; Guo, L. P. Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. Biosens. Bioelectron. 2014, 53, 250–256.

36

Zhang, H. Q.; Huang, Q. T.; Huang, Y. H.; Li, F. M.; Zhang, W. X.; Wei, C.; Chen, J. H.; Dai, P. W.; Huang, L. Z.; Huang, Z. Y. et al. Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta 2014, 142, 125–131.

37

Kundu, M. K.; Sadhukhan, M.; Barman, S. Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J. Mater. Chem. B 2015, 3, 1289–1300.

38

Lee, E. Z.; Jun, Y. S.; Hong, W. H.; Thomas, A.; Jin, M. M. Cubic mesoporous graphitic carbon(Ⅳ) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angew. Chem., Int. Ed. 2010, 49, 9706–9710.

39

Yang, W.; Gan, L.; Li, H. Q.; Zhai, T. Y. Two-dimensional layered nanomaterials for gas-sensing applications. Inorg. Chem. Front. 2016, 3, 433–451.

40

Wang, D. H.; Gu, W.; Zhang, Y. W.; Hu, Y.; Zhang, T.; Tao, X. M.; Chen, W. Novel C-rich carbon nitride for room temperature NO2 gas sensors. RSC Adv. 2014, 4, 18003.

41

Rong, X. S.; Qiu, F. X.; Jiang, Z. T.; Rong, J.; Pan, J. M.; Zhang, T.; Yang, D. Y. Preparation of ternary combined ZnO-Ag2O/porous g-C3N4 composite photocatalyst and enhanced visible-light photocatalytic activity for degradation of ciprofloxacin. Chem. Eng. Res. Des. 2016, 111, 253–261.

42

Lotsch, B. V.; Schnick, W. New light on an old story: Formation of melam during thermal condensation of melamine. Chem.—Eur. J. 2007, 13, 4956–4968.

43

Makowski, S. J.; Köstler, P.; Schnick, W. Formation of a hydrogen-bonded heptazine framework by self-assembly of melem into a hexagonal channel structure. Chem.—Eur. J. 2012, 18, 3248–3257.

44

Chang, Y. Q.; Hong, F.; He, C. X.; Zhang, Q. L.; Liu, J. H. Nitrogen and sulfur dual-doped non-noble catalyst using fluidic acrylonitrile telomer as precursor for efficient oxygen reduction. Adv. Mater. 2013, 25, 4794–4799.

45

Niu, P.; Yang, Y. Q.; Yu, J. C.; Liu, G.; Cheng, H. M. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun. 2014, 50, 10837–10840.

46

Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160–5165.

47

Zhang, J. S.; Zhang, M. W.; Zhang, G. G.; Wang, X. C. Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal. 2012, 2, 940–948.

48

She, X. J.; Liu, L.; Ji, H. Y.; Mo, Z.; Li, Y. P.; Huang, L. Y.; Du, D. L.; Xu, H.; Li, H. M. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B 2016, 187, 144–153.

49

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A., Jr. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

50

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

51

Cadarso, V. J.; Llobera, A.; Puyol, M.; Schift, H. Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications. ACS Nano 2016, 10, 778–785.

52

Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822–6829.

53

Kuzmych, O.; Allen, B. L.; Star, A. Carbon nanotube sensors for exhaled breath components. Nanotechnology 2007, 18, 375502.

54

Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

55

Huang, X.; Qi, X. Y.; Huang, Y. Z.; Li, S. Z.; Xue, C.; Gan, C. L.; Boey, F.; Zhang, H. Photochemically controlled synthesis of anisotropic Au nanostructures: Platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano 2010, 4, 6196–6202.

56

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

57

He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin- film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.

Nano Research
Pages 1710-1719
Cite this article:
Li S, Wang Z, Wang X, et al. Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Research, 2017, 10(5): 1710-1719. https://doi.org/10.1007/s12274-017-1423-8
Part of a topical collection:

705

Views

34

Crossref

N/A

Web of Science

40

Scopus

0

CSCD

Altmetrics

Received: 31 October 2016
Revised: 05 December 2016
Accepted: 17 December 2016
Published: 27 February 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return