AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile synthesis of FeCo@NC core-shell nanospheres supported on graphene as an efficient bifunctional oxygen electrocatalyst

Nan Wu1Yongpeng Lei2( )Qichen Wang1,3Bing Wang1Cheng Han1Yingde Wang1,4( )
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory National University of Defense Technology Changsha 410073 China
College of Basic Education National University of Defense Technology Changsha 410073 China
College of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
College of Materials Science and Engineering Wuhan Textile University Wuhan 430074 China
Show Author Information

Graphical Abstract

Abstract

Electrocatalytic conversion of oxygen holds great potential for clean energy technologies, including water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. The development of highly efficient and inexpensive oxygen electrocatalysts as replacements for precious metal-based catalysts is vitally important for large-scale practical application in the future. A bifunctional oxygen electrocatalyst based on FeCo nanoparticles/N-doped carbon core-shell spheres supported on N-doped graphene sheets was prepared via one-step pyrolysis of graphitic carbon nitride and acetylacetonates. The optimized product exhibited an oxygen electrode activity of 0.87 V and excellent durability. The remarkable performance is mainly attributed to the synergetic effect arising from the FeCo nanoparticles and N-doped carbon shell. This study introduces an inexpensive and simple way to develop highly active bifunctional oxygen electrocatalysts.

Electronic Supplementary Material

Download File(s)
nr-10-7-2332_ESM.pdf (2.4 MB)

References

1

Wang, H. T.; Lee, H. -W.; Deng, Y.; Lu, Z. Y.; Hsu, P. -C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

2

Zhang, C.; Antonietti, M.; Fellinger, T. -P. Blood ties: Co3O4 decorated blood derived carbon as a superior bifunctional electrocatalyst. Adv. Funct. Mater. 2014, 24, 7655–7665.

3

Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190–4197.

4

Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

5

Yang, Y.; Fei, H. L.; Ruan, G. D.; Tour, J. M. Porous cobalt- based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 2015, 27, 3175–3180.

6

Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125.

7

Rossmeisl, J.; Qu, Z. -W.; Zhu, H.; Kroes, G. -J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

8

Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

9

Liu, X. E.; Park, M.; Kim, M. G.; Gupta, S.; Wang, X. J.; Wu, G.; Cho, J. High-performance non-spinel cobalt- manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc-air batteries. Nano Energy 2016, 20, 315–325.

10

Liu, X. E.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G. et al. Metal (Ni, Co)- metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 2015, 25, 5799–5808.

11

Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.

12

Liu, X.; Park, M.; Kim, M. G.; Gupta, S.; Wu, G.; Cho, J. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2015, 54, 9654–9658.

13

Liu, Q.; Jin, J. T.; Zhang, J. Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002–5008.

14

Li, J. X.; Zou, M. Z.; Chen, L. Z.; Huang, Z. G.; Guan, L. H. An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li–O2 batteries. J. Mater. Chem. A 2014, 2, 10634–10638.

15

Zhang, K. J.; Zhang, L. X.; Chen, X.; He, X.; Wang, X. G.; Dong, S. M.; Han, P. X.; Zhang, C. J.; Wang, S.; Gu, L. et al. Mesoporous cobalt molybdenum nitride: A highly active bifunctional electrocatalyst and its application in lithium-O2 batteries. J. Phys. Chem. C 2013, 117, 858–865.

16

Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337–7347.

17

Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

18

Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. L. et al. A solution-phase bifunctional catalyst for lithium−oxygen batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946.

19

Cui, X. J.; Li, Y. H.; Bachmann, S.; Scalone, M.; Surkus, A. -E.; Junge, K.; Topf, C.; Beller, M. Synthesis and characterization of iron–nitrogen-doped graphene/core–shell catalysts: Efficient oxidative dehydrogenation of N- heterocycles. J. Am. Chem. Soc. 2015, 137, 10652–10658.

20

Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317–328.

21

Strickland, K.; Miner, E.; Jia, Q. Y.; Tylus, U.; Ramaswamy, N.; Liang, W. T.; Sougrati, M. -T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nat. Commun. 2015, 6, 7343.

22

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

23

Wu, H. H.; Wang, J.; Wang, G. X.; Cai, F.; Ye, Y. F.; Jiang, Q. K.; Sun, S. C.; Miao, S.; Bao, X. H. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer. Nano Energy 2016, 30, 801–809.

24

Wang, J.; Wu, H. H.; Gao, D. F.; Miao, S.; Wang, G. X.; Bao, X. H. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. Nano Energy 2015, 13, 387–396.

25

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

26

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

27

Ma, Z. L.; Dou, S.; Shen, A. L.; Tao, L.; Dai, L. M.; Wang, S. Y. Sulfur-doped graphene derived from cycled lithium- sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. 2015, 127, 1908–1912.

28

Von Hoene, J.; Charles, R. G.; Hickam, W. M. Thermal decomposition of metal acetylacetonates: Mass spectrometer studies. J. Phys. Chem. 1958, 62, 1098–1101.

29

Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.

30

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

31

Yang, D. X.; Jiang, T.; Wu, T. B.; Zhang, P.; Han, H. L.; Han, B. X. Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe–Co–g-C3N4. Catal. Sci. Technol. 2016, 6, 193–200.

32

Deifallah, M.; McMillan, P. F.; Corà, F. Electronic and structural properties of two-dimensional carbon nitride graphenes. J. Phys. Chem. C 2008, 112, 5447–5453.

33

Wang, M. Q.; Yang, W. H.; Wang, H. H.; Chen, C.; Zhou, Z. -Y.; Sun, S. -G. Pyrolyzed Fe−N−C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal. 2014, 4, 3928–3936.

34

Ghosh, D.; Periyasamy, G.; Pati, S. K. Transition metal embedded two-dimensional C3N4–graphene nanocomposite: A multifunctional material. J. Phys. Chem. C 2014, 118, 15487–15494.

35

Ma, L. B.; Shen, X. P.; Zhu, G. X.; Ji, Z. Y.; Zhou, H. FeCo nanocrystals encapsulated in N-doped carbon nanospheres/ thermal reduced graphene oxide hybrids: Facile synthesis, magnetic and catalytic properties. Carbon 2014, 77, 255–265.

36

Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.

37

Deng, J.; Yu, L.; Deng, D. H.; Chen, X. Q.; Yang, F.; Bao, X. H. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. J. Mater. Chem. A 2013, 1, 14868–14873.

38

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal- free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

39

Wu, G.; Johnston, C. M.; Mack, N. H.; Artyushkova, K.; Ferrandon, M.; Nelson, M.; Lezama-Pacheco, J. S.; Conradson, S. D.; More, K. L.; Myers, D. J. et al. Synthesis–structure–performance correlation for polyaniline– Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J. Mater. Chem. 2011, 21, 11392– 11405.

40

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

41

Wei, J.; Hu, Y. X.; Liang, Y.; Kong, B.; Zhang, J.; Song, J. C.; Bao, Q. L.; Simon, G. P.; Jiang, S. P.; Wang, H. T. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 2015, 25, 5768–5777.

42

Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.

43

Wu, N.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Han, C.; Gou, Y. Z.; Shi, Q.; Fang, D. Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media. Sci. Rep. 2015, 5, 17396.

44

Shi, Q.; Lei, Y. P.; Wang, Y. D.; Wang, H. P.; Jiang, L. H.; Yuan, H. L.; Fang, D.; Wang, B.; Wu, N.; Gou, Y. Z. B, N-codoped 3D micro-/mesoporous carbon nanofibers web as efficient metal-free catalysts for oxygen reduction. Curr. Appl. Phys. 2015, 15, 1606–1614.

45

Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919–1023.

Nano Research
Pages 2332-2343
Cite this article:
Wu N, Lei Y, Wang Q, et al. Facile synthesis of FeCo@NC core-shell nanospheres supported on graphene as an efficient bifunctional oxygen electrocatalyst. Nano Research, 2017, 10(7): 2332-2343. https://doi.org/10.1007/s12274-017-1428-3

741

Views

83

Crossref

N/A

Web of Science

81

Scopus

11

CSCD

Altmetrics

Received: 25 November 2016
Revised: 16 December 2016
Accepted: 18 December 2016
Published: 01 March 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return