AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition

Gonglan Ye1Yongji Gong2,5( )Sidong Lei1Yongmin He1Bo Li1Xiang Zhang3Zehua Jin1Liangliang Dong2Jun Lou1Robert Vajtai1Wu Zhou4Pulickel M. Ajayan1,2( )
Department of Materials Science & NanoEngineering Rice University Houston Texas 77005 USA
Department of Chemistry Rice University Houston Texas 77005 USA
Department of Applied Physics Rice University Houston Texas 77005 USA
Materials Science & Technology Division Oak Ridge National Lab Oak Ridge TN 37831 USA
School of Materials Science and Engineering Beihang University Beijing 100191 China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS2, with a band gap of ~2.6 eV, has an octahedral lattice made of two atomic layers of sulfur and one atomic layer of tin. Till date, there have been limited reports on the growth of large-scale and high quality SnS2 atomic layers and the investigation of their properties as a semiconductor. Here, we report the chemical vapor deposition (CVD) growth of atomic-layer SnS2 with a large crystal size and uniformity. In addition, the number of layers can be changed from a monolayer to few layers and to bulk by changing the growth time. Scanning transmission electron microscopy was used to analyze the atomic structure and demonstrate the 2H stacking poly-type of different layers. The resultant SnS2 crystals is used as a photodetector with external quantum efficiency as high as 150%, suggesting promise for optoelectronic applications.

Electronic Supplementary Material

Download File(s)
nr-10-7-2386_ESM.pdf (1.2 MB)

References

1

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

2

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. -T.; Lin, C. -T.; Chang, K. -D.; Yu, Y. -C.; Wang, J. T. -W.; Chang, C. -S.; Li, L. -J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

3

Li, H.; Wu, J.; Huang, X.; Yin, Z. Y.; Liu, J. Q.; Zhang, H. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 2014, 8, 6563-6570.

4

Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field- effect transistors for sensing NO at room temperature. Small 2012, 8, 63-67.

5

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093-11097.

6

Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131-136.

7

Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273-8277.

8

Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648-2653.

9

Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. -K.; Hsu, W. -T.; Huang, J. -K.; Hsu, C. -L.; Chiu, M. -H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582-8590.

10

Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition- metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 1210-1214.

11

Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713-2731.

12

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.

13

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917-1933.

14

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

15

Yin, Z. Y.; Chen, B.; Bosman, M.; Cao, X. H.; Chen, J. Z.; Zheng, B.; Zhang, H. Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 2014, 10, 3537-3543.

16

Ma, C. B.; Qi, X. Y.; Chen, B.; Bao, S. Y.; Yin, Z. Y.; Wu, X. -J.; Luo, Z. M.; Wei, J.; Zhang, H. -L.; Zhang, H. MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale 2014, 6, 5624-5629.

17

Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125-5131.

18

Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J. Q.; Cao, X. H.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314-3319.

19

Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. -D.; Li, J. -J.; Gu, C. -Z.; Meng, X. -M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949-8955.

20

Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M.; Kumar, R.; Zhao, W. J.; Castro Neto, A. H. .; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 2014, 14, 1909-1913.

21

Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few- layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419-2425.

22

Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 2015, 27, 4640-4648.

23

Koski, K. J.; Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 2013, 7, 3739-3742.

24

Feng, J. J.; Chen, J. T.; Geng, B. S.; Feng, H. T.; Li, H. J.; Yan, D.; Zhuo, R. F.; Cheng, S.; Wu, Z. G.; Yan, P. X. Two-dimensional hexagonal SnS2 nanoflakes: Fabrication, characterization, and growth mechanism. Appl. Phys. A 2011, 103, 413-419.

25

Seminovski, Y.; Palacios, P.; Wahnón, P. Effect of van der Waals interaction on the properties of SnS2 layered semiconductor. Thin Solid Films 2013, 535, 387-389.

26

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

27

He, X. C.; Shen, H. L. Ab initio calculations of band structure and thermophysical properties for SnS2 and SnSe2. Phys. B: Condens. Matter 2012, 407, 1146-1152.

28

Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743-10755.

29

Liu, Z. X.; Deng, H. Q.; Mukherjee, P. P. Evaluating pristine and modified SnS2 as a lithium-ion battery anode: A first- principles study. ACS Appl. Mater. Interfaces 2015, 7, 4000-4009.

30

Zhuang, H. L.; Hennig, R. G. Theoretical perspective of photocatalytic properties of single-layer SnS2. Phys. Rev. B 2013, 88, 115314.

31
Joshi, P. D.; Joag, D. S.; Rout, C. S.; Late, D. J. Photosensitive field emission study of SnS2 nanosheets. In Proceedings of the 2014 27th International Vacuum Nanoelectronics Conference, Engelberg, 2014, pp 241-242.https://doi.org/10.1109/IVNC.2014.6894832
32

Nørby, P.; Johnsen, S.; Iversen, B. B. Fine tunable aqueous solution synthesis of textured flexible SnS2 thin films and nanosheets. Phys. Chem. Chem. Phys. 2015, 17, 9282-9287.

33

Chang, K.; Wang, Z.; Huang, G. C.; Li, H.; Chen, W. X.; Lee, J. Y. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 2012, 201, 259-266.

34

Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854-3859.

35

Wahnón, P.; Conesa, J. C.; Palacios, P.; Lucena, R.; Aguilera, I.; Seminovski, Y.; Fresno, F. V-doped SnS2: A new intermediate band material for a better use of the solar spectrum. Phys. Chem. Chem. Phys. 2011, 13, 20401-20407.

36

Zhong, H. X.; Yang, G. Z.; Song, H. W.; Liao, Q. Y.; Cui, H.; Shen, P. K.; Wang, C. -X. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emitting performances. J. Phys. Chem. C 2012, 116, 9319-9326.

37

Song, H. S.; Li, S. L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y. B.; Tsukagoshi, K. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 2013, 5, 9666-9670.

38

Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506-513.

39

Wen, S. J.; Pan, H.; Zheng, Y. B. Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. J. Mater. Chem. C 2015, 3, 3714-3721.

40

Zschieschang, U.; Holzmann, T.; Kuhn, A.; Aghamohammadi, M.; Lotsch, B. V.; Klauk, H. Threshold-voltage control and enhancement-mode characteristics in multilayer tin disulfide field-effect transistors by gate-oxide passivation with an alkylphosphonic acid self-assembled monolayer. J. Appl. Phys. 2015, 117, 104509.

41

Shibata, T.; Miura, T.; Kishi, T.; Nagai, T. Synthesis of single crystal SnS2 by chemical vapor transport method at low temperature using reverse temperature gradient. J. Cryst. Growth 1990, 106, 593-604.

42

Liu, Y. C.; Kang, H. Y.; Jiao, L. F.; Chen, C. C.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 2015, 7, 1325-1332.

43

Řičica, T.; Střižík, L.; Dostál, L.; Bouška, M.; Vlček, M.; Beneš, L.; Wágner, T.; Jambor, R. SnS and SnS2 thin films deposited using a spin-coating technique from intramolecularly coordinated organotin sulfides. Appl. Organomet. Chem. 2015, 29, 176-180.

44

Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135-6141.

45

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.

46

Bhatt, S. V.; Deshpande, M. P.; Sathe, V.; Chaki, S. H. Effect of pressure and temperature on Raman scattering and an anharmonicity study of tin dichalcogenide single crystals. Solid State Commun. 2015, 201, 54-58.

47

Ahn, J. H.; Lee, M. J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M. -H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703-3708.

48

De Groot, C. H.; Gurnani, C.; Hector, A. L.; Huang, R. M.; Jura, M.; Levason, W.; Reid, G. Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether precursors. Chem. Mater. 2012, 24, 4442-4449.

49

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. -C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.

50

Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 2010, 464, 571-574.

51

Lei, S. D.; Wen, F. F.; Li, B.; Wang, Q. Z.; Huang, Y. H.; Gong, Y. J.; He, Y. M.; Dong, P.; Bellah, J.; George, A. et al. Optoelectronic memory using two-dimensional materials. Nano Lett. 2015, 15, 259-265.

Nano Research
Pages 2386-2394
Cite this article:
Ye G, Gong Y, Lei S, et al. Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Research, 2017, 10(7): 2386-2394. https://doi.org/10.1007/s12274-017-1436-3

952

Views

131

Crossref

N/A

Web of Science

132

Scopus

4

CSCD

Altmetrics

Received: 23 September 2016
Revised: 21 December 2016
Accepted: 26 December 2016
Published: 31 March 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return