Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition

Gonglan Ye1Yongji Gong2,5()Sidong Lei1Yongmin He1Bo Li1Xiang Zhang3Zehua Jin1Liangliang Dong2Jun Lou1Robert Vajtai1Wu Zhou4Pulickel M. Ajayan1,2()
Department of Materials Science & NanoEngineering Rice University Houston Texas 77005 USA
Department of Chemistry Rice University Houston Texas 77005 USA
Department of Applied Physics Rice University Houston Texas 77005 USA
Materials Science & Technology Division Oak Ridge National Lab Oak Ridge TN 37831 USA
School of Materials Science and Engineering Beihang University Beijing 100191 China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS2, with a band gap of ~2.6 eV, has an octahedral lattice made of two atomic layers of sulfur and one atomic layer of tin. Till date, there have been limited reports on the growth of large-scale and high quality SnS2 atomic layers and the investigation of their properties as a semiconductor. Here, we report the chemical vapor deposition (CVD) growth of atomic-layer SnS2 with a large crystal size and uniformity. In addition, the number of layers can be changed from a monolayer to few layers and to bulk by changing the growth time. Scanning transmission electron microscopy was used to analyze the atomic structure and demonstrate the 2H stacking poly-type of different layers. The resultant SnS2 crystals is used as a photodetector with external quantum efficiency as high as 150%, suggesting promise for optoelectronic applications.

Electronic Supplementary Material

Download File(s)
nr-10-7-2386_ESM.pdf (1.2 MB)

References

1

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

2

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. -T.; Lin, C. -T.; Chang, K. -D.; Yu, Y. -C.; Wang, J. T. -W.; Chang, C. -S.; Li, L. -J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

3

Li, H.; Wu, J.; Huang, X.; Yin, Z. Y.; Liu, J. Q.; Zhang, H. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 2014, 8, 6563-6570.

4

Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field- effect transistors for sensing NO at room temperature. Small 2012, 8, 63-67.

5

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093-11097.

6

Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131-136.

7

Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273-8277.

8

Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648-2653.

9

Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. -K.; Hsu, W. -T.; Huang, J. -K.; Hsu, C. -L.; Chiu, M. -H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582-8590.

10

Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition- metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 1210-1214.

11

Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713-2731.

12

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.

13

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917-1933.

14

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

15

Yin, Z. Y.; Chen, B.; Bosman, M.; Cao, X. H.; Chen, J. Z.; Zheng, B.; Zhang, H. Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 2014, 10, 3537-3543.

16

Ma, C. B.; Qi, X. Y.; Chen, B.; Bao, S. Y.; Yin, Z. Y.; Wu, X. -J.; Luo, Z. M.; Wei, J.; Zhang, H. -L.; Zhang, H. MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale 2014, 6, 5624-5629.

17

Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125-5131.

18

Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J. Q.; Cao, X. H.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314-3319.

19

Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. -D.; Li, J. -J.; Gu, C. -Z.; Meng, X. -M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949-8955.

20

Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M.; Kumar, R.; Zhao, W. J.; Castro Neto, A. H. .; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 2014, 14, 1909-1913.

21

Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few- layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419-2425.

22

Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 2015, 27, 4640-4648.

23

Koski, K. J.; Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 2013, 7, 3739-3742.

24

Feng, J. J.; Chen, J. T.; Geng, B. S.; Feng, H. T.; Li, H. J.; Yan, D.; Zhuo, R. F.; Cheng, S.; Wu, Z. G.; Yan, P. X. Two-dimensional hexagonal SnS2 nanoflakes: Fabrication, characterization, and growth mechanism. Appl. Phys. A 2011, 103, 413-419.

25

Seminovski, Y.; Palacios, P.; Wahnón, P. Effect of van der Waals interaction on the properties of SnS2 layered semiconductor. Thin Solid Films 2013, 535, 387-389.

26

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

27

He, X. C.; Shen, H. L. Ab initio calculations of band structure and thermophysical properties for SnS2 and SnSe2. Phys. B: Condens. Matter 2012, 407, 1146-1152.

28

Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743-10755.

29

Liu, Z. X.; Deng, H. Q.; Mukherjee, P. P. Evaluating pristine and modified SnS2 as a lithium-ion battery anode: A first- principles study. ACS Appl. Mater. Interfaces 2015, 7, 4000-4009.

30

Zhuang, H. L.; Hennig, R. G. Theoretical perspective of photocatalytic properties of single-layer SnS2. Phys. Rev. B 2013, 88, 115314.

31
Joshi, P. D.; Joag, D. S.; Rout, C. S.; Late, D. J. Photosensitive field emission study of SnS2 nanosheets. In Proceedings of the 2014 27th International Vacuum Nanoelectronics Conference, Engelberg, 2014, pp 241-242.https://doi.org/10.1109/IVNC.2014.6894832
32

Nørby, P.; Johnsen, S.; Iversen, B. B. Fine tunable aqueous solution synthesis of textured flexible SnS2 thin films and nanosheets. Phys. Chem. Chem. Phys. 2015, 17, 9282-9287.

33

Chang, K.; Wang, Z.; Huang, G. C.; Li, H.; Chen, W. X.; Lee, J. Y. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 2012, 201, 259-266.

34

Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854-3859.

35

Wahnón, P.; Conesa, J. C.; Palacios, P.; Lucena, R.; Aguilera, I.; Seminovski, Y.; Fresno, F. V-doped SnS2: A new intermediate band material for a better use of the solar spectrum. Phys. Chem. Chem. Phys. 2011, 13, 20401-20407.

36

Zhong, H. X.; Yang, G. Z.; Song, H. W.; Liao, Q. Y.; Cui, H.; Shen, P. K.; Wang, C. -X. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emitting performances. J. Phys. Chem. C 2012, 116, 9319-9326.

37

Song, H. S.; Li, S. L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y. B.; Tsukagoshi, K. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 2013, 5, 9666-9670.

38

Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506-513.

39

Wen, S. J.; Pan, H.; Zheng, Y. B. Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. J. Mater. Chem. C 2015, 3, 3714-3721.

40

Zschieschang, U.; Holzmann, T.; Kuhn, A.; Aghamohammadi, M.; Lotsch, B. V.; Klauk, H. Threshold-voltage control and enhancement-mode characteristics in multilayer tin disulfide field-effect transistors by gate-oxide passivation with an alkylphosphonic acid self-assembled monolayer. J. Appl. Phys. 2015, 117, 104509.

41

Shibata, T.; Miura, T.; Kishi, T.; Nagai, T. Synthesis of single crystal SnS2 by chemical vapor transport method at low temperature using reverse temperature gradient. J. Cryst. Growth 1990, 106, 593-604.

42

Liu, Y. C.; Kang, H. Y.; Jiao, L. F.; Chen, C. C.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 2015, 7, 1325-1332.

43

Řičica, T.; Střižík, L.; Dostál, L.; Bouška, M.; Vlček, M.; Beneš, L.; Wágner, T.; Jambor, R. SnS and SnS2 thin films deposited using a spin-coating technique from intramolecularly coordinated organotin sulfides. Appl. Organomet. Chem. 2015, 29, 176-180.

44

Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135-6141.

45

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.

46

Bhatt, S. V.; Deshpande, M. P.; Sathe, V.; Chaki, S. H. Effect of pressure and temperature on Raman scattering and an anharmonicity study of tin dichalcogenide single crystals. Solid State Commun. 2015, 201, 54-58.

47

Ahn, J. H.; Lee, M. J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M. -H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703-3708.

48

De Groot, C. H.; Gurnani, C.; Hector, A. L.; Huang, R. M.; Jura, M.; Levason, W.; Reid, G. Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether precursors. Chem. Mater. 2012, 24, 4442-4449.

49

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. -C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.

50

Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 2010, 464, 571-574.

51

Lei, S. D.; Wen, F. F.; Li, B.; Wang, Q. Z.; Huang, Y. H.; Gong, Y. J.; He, Y. M.; Dong, P.; Bellah, J.; George, A. et al. Optoelectronic memory using two-dimensional materials. Nano Lett. 2015, 15, 259-265.

Nano Research
Pages 2386-2394
Cite this article:
Ye G, Gong Y, Lei S, et al. Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Research, 2017, 10(7): 2386-2394. https://doi.org/10.1007/s12274-017-1436-3
Metrics & Citations  
Article History
Copyright
Return