AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent

Mingyang Liu1,§Luqing Wang1,§Pei Dong1Liangliang Dong2Xifan Wang1Jarin Joyner1Xiangjian Wan3Boris I. Yakobson1( )Robert Vajtai1( )Pulickel Ajayan1Pol Spanos1( )
Department of Materials Science and Nanoengineering Rice University Houston TX 77005 USA
Department of Chemistry Rice University Houston TX 77005 USA
College of Chemistry Nankai University Tianjin 300071 China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; therefore, the correlation between defects/vacancies and the properties of a material has attracted extensive attention. Here, we report the synthesis of Bi2S3 microspheres by nanorod assemblies with exposed {211} facets, and the investigation of the types and concentrations of defects/vacancies by means of positron annihilation spectrometry. Our studies revealed that an increase in the calcined temperature, from 350 to 400 ℃, led the predominant defect/vacancy densities to change from isolated bismuth vacancies (VBi) to septuple Bi3+-sulfur vacancy associates (VBiBiBiSSSS). Furthermore, the concentration of septuple Bi3+-sulfur vacancy associates increased as the calcined temperature was increased from 400 to 450 ℃. The characterized transient photocurrent spectrum demonstrates that the photocurrent values closely correlate with the types and concentrations of the predominant defects/vacancies. Our theoretical computation, through first principles, showed that VBiBiBiSSSS strongly absorbs I2(sol), easily desorbs I(sol), and enhances the electrocatalytic activity of the nanostructures.

Electronic Supplementary Material

Download File(s)
nr-10-7-2405_ESM.pdf (736.2 KB)

References

1

Scherrer, B.; Döbeli, M.; Felfer, P.; Spolenak, R.; Cairney, J.; Galinski, H. The hidden pathways in dense energy materials-oxygen at defects in nanocrystalline metals. Adv. Mater. 2015, 27, 6220-6224.

2

Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y. E.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater. 2016, 28, 2540-2546.

3

Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 2010, 5, 326-329.

4

Kwon, K. D.; Refson, K.; Sposito, G. Defect-induced photoconductivity in layered manganese oxides: A density functional theory study. Phys. Rev. Lett. 2008, 100, 146601.

5

Wang, H.; Zhang, J. J.; Hang, X. D.; Zhang, X. D.; Xie, J. F.; Pan, B. C.; Xie, Y. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew. Chem., Int. Ed. 2015, 54, 1195-1199.

6

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140-3141.

7

Zheng, H. L.; Yang, B. S.; Wang, D. D.; Han, R. L.; Du, X. B.; Yan, Y. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 2014, 104, 132403.

8

Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738-5745.

9

Stone, A. J.; Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 1986, 128, 501-503.

10

Li, L.; Reich, S.; Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 2005, 72, 184109.

11

Peng, X. Y.; Ahuja, R. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. 2008, 8, 4464-4468.

12

Kim, P. Graphene: Across the border. Nat. Mater. 2010, 9, 792-793.

13

Li, K.; Zeng, X. Q.; Gao, S. M.; Ma, L.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2-x/g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 2016, 9, 1969-1982.

14

Wang, F.; Lin, J.; Zhao, T. B.; Hu, D. D.; Wu, T.; Liu, Y. Intrinsic "vacancy point defect" induced electrochemiluminescence from coreless supertetrahedral chalcogenide nanocluster. J. Am. Chem. Soc. 2016, 138, 7718-7724.

15

Clark, G.; Schaibley, J. R.; Ross, J.; Taniguchi, T.; Watanabe, K. J.; Hendrickson, J. R.; Mou, S.; Yao, W.; Xu, X. D. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 2016, 16, 3944-3948.

16

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821-831.

17

Wu, T.; Zhou, X. G.; Zhang, H.; Zhong, X. H. Bi2S3 nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379-386.

18

Mohan, R. Green bismuth. Nat. Chem. 2010, 2, 336.

19

Ye, C. H.; Meng, G. W.; Jiang, Z.; Wang, Y. H.; Wang, G. Z.; Zhang, L. D. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors. J. Am. Chem. Soc. 2002, 124, 15180-15181.

20

Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J. Phys. Chem. B 2003, 107, 8378-8381.

21

Biswas, K.; Zhao, L. D.; Kanatzidis, M. G. Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2012, 2, 634-638.

22

Konstantatos, G.; Levina, L.; Tang, J.; Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 2008, 8, 4002-4006.

23

Bernechea, M.; Cao, Y. M.; Konstantatos, G. Size and bandgap tunability in Bi2S3 colloidal nanocrystals and its effect in solution processed solar cells. J. Mater. Chem. A 2015, 3, 20642-20648.

24

Yang, Q.; Hu, C. G.; Wang, S. X.; Xi, Y.; Zhang, K. Y. Tunable synthesis and thermoelectric property of Bi2S3 nanowires. J. Phys. Chem. C 2013, 117, 5515-5520.

25

Li, R. X.; Yue, Q.; Wei, Z. M. Abnormal low-temperature behavior of a continuous photocurrent in Bi2S3 nanowires. J. Mater. Chem. C 2013, 1, 5866-5871.

26

Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y. T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv. Mater. 2003, 15, 936-940.

27

Lin, Y. M.; Dresselhaus, M. S. Thermoelectric properties of superlattice nanowires. Phys. Rev. B 2003, 68, 075304.

28

Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229-2232.

29

Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818-821.

30

Wang, Y.; Chen, J.; Wang, P.; Chen, L.; Chen, Y. B.; Wu, L. M. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. J. Phys. Chem. C 2009, 113, 16009-16014.

31

Han, Q. F.; Chen, J.; Yang, X. J.; Lu, L. D.; Wang, X. Preparation of uniform Bi2S3 nanorods using xanthate complexes of bismuth (Ⅲ). J. Phys. Chem. C 2007, 111, 14072- 14077.

32

Thomson, J. W.; Cademartiri, L.; MacDonald, M.; Petrov, S.; Calestani, G.; Zhang, P.; Ozin, G. A. Ultrathin Bi2S3 nanowires: Surface and core structure at the cluster-nanocrystal transition. J. Am. Chem. Soc. 2010, 132, 9058-9068.

33

Cademartiri, L.; Scotognella, F.; O'Brien, P. G.; Lotsch, B. V.; Thomson, J.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. Nano Lett. 2009, 9, 1482-1486.

34

Wang, D. S.; Hao, C. H.; Zheng, W.; Ma, X. L.; Chu, D. R.; Peng, Q.; Li, Y. D. Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Res. 2009, 2, 130-134.

35

Tahir, A. A.; Ehsan, M. A.; Mazhar, M.; Wijayantha, K. G. U.; Zeller, M.; Hunter, A. D. Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 2010, 22, 5084-5092.

36

Mizoguchi, H.; Hosono, H.; Ueda, N.; Kawazoe, H. Preparation and electrical properties of Bi2S3 whiskers. J. Appl. Phys. 1995, 78, 1376-1378.

37

Liu, M. Y.; Wang, L. Q.; Zhou, L. N.; Lei, S. D.; Joyner, J.; Yang, Y. C.; Vajtai, R.; , Ajayan, P.; Yakobson, B. I.; Spanos, P. Characterization of tin(Ⅱ) sulfide defects/vacancies and correlation with their photocurrent. Nano Res. 2017, 10, 218-228.

38

Robles, J. M. C.; Ogando, E.; Plazaola, F. Positron lifetime calculation for the elements of the periodic table. J. Phys. : Condens. Matter 2007, 19, 176222.

39

Barbiellini, B.; Puska, M. J.; Korhonen, T.; Harju, A.; Torsti, T.; Nieminen, R. M. Calculation of positron states and annihilation in solids: A density-gradient-correction scheme. Phys. Rev. B 1996, 53, 16201.

40

Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew. Chem., Int. Ed. 2006, 45, 755-759.

41

Liu, M. Y.; Wang, L. Q.; Zhou, L. N.; Lei, S. D.; Joyner, J.; Yang, Y. C.; Vajtai, R.; Ajayan, P.; Yakobson, B. I.; Spanos, P. Characterization of tin(Ⅱ) sulfide defects/vacancies and correlation with their photocurrent. Nano Res. 2017, 10, 218-228.

42

Guo, S. Q.; Jing, T. Z.; Zhang, X.; Yang, X. B.; Yuan, Z. H.; Hu, F. Z. Mesoporous Bi2S3 nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells. Nanoscale 2014, 6, 14433-14440.

43

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

44

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. J. Phys. Rev. B 1994, 49, 14251-14269.

45

Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Rational screening low-cost counter electrodes for dye- sensitized solar cells. Nat. Commun. 2013, 4, 1583.

46

Hou, Y.; Chen, Z. P.; Wang, D.; Zhang, B.; Yang, S.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells. Small 2014, 10, 484-492.

47

Hauch, A.; Georg, A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye- sensitized solar cells. Electrochim. Acta 2001, 46, 3457-3466.

48

Calogero, G.; Calandra, P.; Irrera, A.; Sinopoli, A.; Citro, I.; Di Marco, G. A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1838-1844.

Nano Research
Pages 2405-2414
Cite this article:
Liu M, Wang L, Dong P, et al. Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent. Nano Research, 2017, 10(7): 2405-2414. https://doi.org/10.1007/s12274-017-1440-7

634

Views

8

Crossref

N/A

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 02 November 2016
Revised: 21 December 2016
Accepted: 26 December 2016
Published: 26 April 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return