Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent

Mingyang Liu1,§Luqing Wang1,§Pei Dong1Liangliang Dong2Xifan Wang1Jarin Joyner1Xiangjian Wan3Boris I. Yakobson1()Robert Vajtai1()Pulickel Ajayan1Pol Spanos1()
Department of Materials Science and Nanoengineering Rice University Houston TX 77005 USA
Department of Chemistry Rice University Houston TX 77005 USA
College of Chemistry Nankai University Tianjin 300071 China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; therefore, the correlation between defects/vacancies and the properties of a material has attracted extensive attention. Here, we report the synthesis of Bi2S3 microspheres by nanorod assemblies with exposed {211} facets, and the investigation of the types and concentrations of defects/vacancies by means of positron annihilation spectrometry. Our studies revealed that an increase in the calcined temperature, from 350 to 400 ℃, led the predominant defect/vacancy densities to change from isolated bismuth vacancies (VBi) to septuple Bi3+-sulfur vacancy associates (VBiBiBiSSSS). Furthermore, the concentration of septuple Bi3+-sulfur vacancy associates increased as the calcined temperature was increased from 400 to 450 ℃. The characterized transient photocurrent spectrum demonstrates that the photocurrent values closely correlate with the types and concentrations of the predominant defects/vacancies. Our theoretical computation, through first principles, showed that VBiBiBiSSSS strongly absorbs I2(sol), easily desorbs I(sol), and enhances the electrocatalytic activity of the nanostructures.

Electronic Supplementary Material

Download File(s)
nr-10-7-2405_ESM.pdf (736.2 KB)

References

1

Scherrer, B.; Döbeli, M.; Felfer, P.; Spolenak, R.; Cairney, J.; Galinski, H. The hidden pathways in dense energy materials-oxygen at defects in nanocrystalline metals. Adv. Mater. 2015, 27, 6220-6224.

2

Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y. E.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater. 2016, 28, 2540-2546.

3

Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 2010, 5, 326-329.

4

Kwon, K. D.; Refson, K.; Sposito, G. Defect-induced photoconductivity in layered manganese oxides: A density functional theory study. Phys. Rev. Lett. 2008, 100, 146601.

5

Wang, H.; Zhang, J. J.; Hang, X. D.; Zhang, X. D.; Xie, J. F.; Pan, B. C.; Xie, Y. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew. Chem., Int. Ed. 2015, 54, 1195-1199.

6

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140-3141.

7

Zheng, H. L.; Yang, B. S.; Wang, D. D.; Han, R. L.; Du, X. B.; Yan, Y. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 2014, 104, 132403.

8

Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738-5745.

9

Stone, A. J.; Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 1986, 128, 501-503.

10

Li, L.; Reich, S.; Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 2005, 72, 184109.

11

Peng, X. Y.; Ahuja, R. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. 2008, 8, 4464-4468.

12

Kim, P. Graphene: Across the border. Nat. Mater. 2010, 9, 792-793.

13

Li, K.; Zeng, X. Q.; Gao, S. M.; Ma, L.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2-x/g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 2016, 9, 1969-1982.

14

Wang, F.; Lin, J.; Zhao, T. B.; Hu, D. D.; Wu, T.; Liu, Y. Intrinsic "vacancy point defect" induced electrochemiluminescence from coreless supertetrahedral chalcogenide nanocluster. J. Am. Chem. Soc. 2016, 138, 7718-7724.

15

Clark, G.; Schaibley, J. R.; Ross, J.; Taniguchi, T.; Watanabe, K. J.; Hendrickson, J. R.; Mou, S.; Yao, W.; Xu, X. D. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 2016, 16, 3944-3948.

16

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821-831.

17

Wu, T.; Zhou, X. G.; Zhang, H.; Zhong, X. H. Bi2S3 nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379-386.

18

Mohan, R. Green bismuth. Nat. Chem. 2010, 2, 336.

19

Ye, C. H.; Meng, G. W.; Jiang, Z.; Wang, Y. H.; Wang, G. Z.; Zhang, L. D. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors. J. Am. Chem. Soc. 2002, 124, 15180-15181.

20

Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J. Phys. Chem. B 2003, 107, 8378-8381.

21

Biswas, K.; Zhao, L. D.; Kanatzidis, M. G. Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2012, 2, 634-638.

22

Konstantatos, G.; Levina, L.; Tang, J.; Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 2008, 8, 4002-4006.

23

Bernechea, M.; Cao, Y. M.; Konstantatos, G. Size and bandgap tunability in Bi2S3 colloidal nanocrystals and its effect in solution processed solar cells. J. Mater. Chem. A 2015, 3, 20642-20648.

24

Yang, Q.; Hu, C. G.; Wang, S. X.; Xi, Y.; Zhang, K. Y. Tunable synthesis and thermoelectric property of Bi2S3 nanowires. J. Phys. Chem. C 2013, 117, 5515-5520.

25

Li, R. X.; Yue, Q.; Wei, Z. M. Abnormal low-temperature behavior of a continuous photocurrent in Bi2S3 nanowires. J. Mater. Chem. C 2013, 1, 5866-5871.

26

Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y. T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv. Mater. 2003, 15, 936-940.

27

Lin, Y. M.; Dresselhaus, M. S. Thermoelectric properties of superlattice nanowires. Phys. Rev. B 2003, 68, 075304.

28

Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229-2232.

29

Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818-821.

30

Wang, Y.; Chen, J.; Wang, P.; Chen, L.; Chen, Y. B.; Wu, L. M. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. J. Phys. Chem. C 2009, 113, 16009-16014.

31

Han, Q. F.; Chen, J.; Yang, X. J.; Lu, L. D.; Wang, X. Preparation of uniform Bi2S3 nanorods using xanthate complexes of bismuth (Ⅲ). J. Phys. Chem. C 2007, 111, 14072- 14077.

32

Thomson, J. W.; Cademartiri, L.; MacDonald, M.; Petrov, S.; Calestani, G.; Zhang, P.; Ozin, G. A. Ultrathin Bi2S3 nanowires: Surface and core structure at the cluster-nanocrystal transition. J. Am. Chem. Soc. 2010, 132, 9058-9068.

33

Cademartiri, L.; Scotognella, F.; O'Brien, P. G.; Lotsch, B. V.; Thomson, J.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. Nano Lett. 2009, 9, 1482-1486.

34

Wang, D. S.; Hao, C. H.; Zheng, W.; Ma, X. L.; Chu, D. R.; Peng, Q.; Li, Y. D. Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Res. 2009, 2, 130-134.

35

Tahir, A. A.; Ehsan, M. A.; Mazhar, M.; Wijayantha, K. G. U.; Zeller, M.; Hunter, A. D. Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 2010, 22, 5084-5092.

36

Mizoguchi, H.; Hosono, H.; Ueda, N.; Kawazoe, H. Preparation and electrical properties of Bi2S3 whiskers. J. Appl. Phys. 1995, 78, 1376-1378.

37

Liu, M. Y.; Wang, L. Q.; Zhou, L. N.; Lei, S. D.; Joyner, J.; Yang, Y. C.; Vajtai, R.; , Ajayan, P.; Yakobson, B. I.; Spanos, P. Characterization of tin(Ⅱ) sulfide defects/vacancies and correlation with their photocurrent. Nano Res. 2017, 10, 218-228.

38

Robles, J. M. C.; Ogando, E.; Plazaola, F. Positron lifetime calculation for the elements of the periodic table. J. Phys. : Condens. Matter 2007, 19, 176222.

39

Barbiellini, B.; Puska, M. J.; Korhonen, T.; Harju, A.; Torsti, T.; Nieminen, R. M. Calculation of positron states and annihilation in solids: A density-gradient-correction scheme. Phys. Rev. B 1996, 53, 16201.

40

Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew. Chem., Int. Ed. 2006, 45, 755-759.

41

Liu, M. Y.; Wang, L. Q.; Zhou, L. N.; Lei, S. D.; Joyner, J.; Yang, Y. C.; Vajtai, R.; Ajayan, P.; Yakobson, B. I.; Spanos, P. Characterization of tin(Ⅱ) sulfide defects/vacancies and correlation with their photocurrent. Nano Res. 2017, 10, 218-228.

42

Guo, S. Q.; Jing, T. Z.; Zhang, X.; Yang, X. B.; Yuan, Z. H.; Hu, F. Z. Mesoporous Bi2S3 nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells. Nanoscale 2014, 6, 14433-14440.

43

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

44

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. J. Phys. Rev. B 1994, 49, 14251-14269.

45

Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Rational screening low-cost counter electrodes for dye- sensitized solar cells. Nat. Commun. 2013, 4, 1583.

46

Hou, Y.; Chen, Z. P.; Wang, D.; Zhang, B.; Yang, S.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells. Small 2014, 10, 484-492.

47

Hauch, A.; Georg, A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye- sensitized solar cells. Electrochim. Acta 2001, 46, 3457-3466.

48

Calogero, G.; Calandra, P.; Irrera, A.; Sinopoli, A.; Citro, I.; Di Marco, G. A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1838-1844.

Nano Research
Pages 2405-2414
Cite this article:
Liu M, Wang L, Dong P, et al. Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent. Nano Research, 2017, 10(7): 2405-2414. https://doi.org/10.1007/s12274-017-1440-7
Metrics & Citations  
Article History
Copyright
Return